Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\left(\frac{19}{10}-\frac{3}{20}\right)\times \frac{8^{2}}{21}+\left(3-\frac{1}{3}\right)^{2}}{5-\frac{11}{3}}}
Add \frac{6}{5} and \frac{7}{10} to get \frac{19}{10}.
\sqrt{\frac{\frac{7}{4}\times \frac{8^{2}}{21}+\left(3-\frac{1}{3}\right)^{2}}{5-\frac{11}{3}}}
Subtract \frac{3}{20} from \frac{19}{10} to get \frac{7}{4}.
\sqrt{\frac{\frac{7}{4}\times \frac{64}{21}+\left(3-\frac{1}{3}\right)^{2}}{5-\frac{11}{3}}}
Calculate 8 to the power of 2 and get 64.
\sqrt{\frac{\frac{16}{3}+\left(3-\frac{1}{3}\right)^{2}}{5-\frac{11}{3}}}
Multiply \frac{7}{4} and \frac{64}{21} to get \frac{16}{3}.
\sqrt{\frac{\frac{16}{3}+\left(\frac{8}{3}\right)^{2}}{5-\frac{11}{3}}}
Subtract \frac{1}{3} from 3 to get \frac{8}{3}.
\sqrt{\frac{\frac{16}{3}+\frac{64}{9}}{5-\frac{11}{3}}}
Calculate \frac{8}{3} to the power of 2 and get \frac{64}{9}.
\sqrt{\frac{\frac{112}{9}}{5-\frac{11}{3}}}
Add \frac{16}{3} and \frac{64}{9} to get \frac{112}{9}.
\sqrt{\frac{\frac{112}{9}}{\frac{4}{3}}}
Subtract \frac{11}{3} from 5 to get \frac{4}{3}.
\sqrt{\frac{112}{9}\times \frac{3}{4}}
Divide \frac{112}{9} by \frac{4}{3} by multiplying \frac{112}{9} by the reciprocal of \frac{4}{3}.
\sqrt{\frac{28}{3}}
Multiply \frac{112}{9} and \frac{3}{4} to get \frac{28}{3}.
\frac{\sqrt{28}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{28}{3}} as the division of square roots \frac{\sqrt{28}}{\sqrt{3}}.
\frac{2\sqrt{7}}{\sqrt{3}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{2\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{7}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{21}}{3}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.