Evaluate
\frac{2\sqrt{4407}}{117}\approx 1.134790416
Share
Copied to clipboard
\sqrt{\frac{\left(\frac{104}{12}+\frac{3}{12}-7\right)\left(1-\frac{11}{15}\right)+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Least common multiple of 3 and 4 is 12. Convert \frac{26}{3} and \frac{1}{4} to fractions with denominator 12.
\sqrt{\frac{\left(\frac{104+3}{12}-7\right)\left(1-\frac{11}{15}\right)+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Since \frac{104}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\left(\frac{107}{12}-7\right)\left(1-\frac{11}{15}\right)+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Add 104 and 3 to get 107.
\sqrt{\frac{\left(\frac{107}{12}-\frac{84}{12}\right)\left(1-\frac{11}{15}\right)+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Convert 7 to fraction \frac{84}{12}.
\sqrt{\frac{\frac{107-84}{12}\left(1-\frac{11}{15}\right)+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Since \frac{107}{12} and \frac{84}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{23}{12}\left(1-\frac{11}{15}\right)+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Subtract 84 from 107 to get 23.
\sqrt{\frac{\frac{23}{12}\left(\frac{15}{15}-\frac{11}{15}\right)+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Convert 1 to fraction \frac{15}{15}.
\sqrt{\frac{\frac{23}{12}\times \frac{15-11}{15}+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Since \frac{15}{15} and \frac{11}{15} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{23}{12}\times \frac{4}{15}+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Subtract 11 from 15 to get 4.
\sqrt{\frac{\frac{23\times 4}{12\times 15}+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Multiply \frac{23}{12} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{92}{180}+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Do the multiplications in the fraction \frac{23\times 4}{12\times 15}.
\sqrt{\frac{\frac{23}{45}+\frac{8}{4}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Reduce the fraction \frac{92}{180} to lowest terms by extracting and canceling out 4.
\sqrt{\frac{\frac{23}{45}+2}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Divide 8 by 4 to get 2.
\sqrt{\frac{\frac{23}{45}+\frac{90}{45}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Convert 2 to fraction \frac{90}{45}.
\sqrt{\frac{\frac{23+90}{45}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Since \frac{23}{45} and \frac{90}{45} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{113}{45}}{\frac{1}{4}+1+\frac{1}{2}\times \frac{7}{5}}}
Add 23 and 90 to get 113.
\sqrt{\frac{\frac{113}{45}}{\frac{1}{4}+\frac{4}{4}+\frac{1}{2}\times \frac{7}{5}}}
Convert 1 to fraction \frac{4}{4}.
\sqrt{\frac{\frac{113}{45}}{\frac{1+4}{4}+\frac{1}{2}\times \frac{7}{5}}}
Since \frac{1}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{113}{45}}{\frac{5}{4}+\frac{1}{2}\times \frac{7}{5}}}
Add 1 and 4 to get 5.
\sqrt{\frac{\frac{113}{45}}{\frac{5}{4}+\frac{1\times 7}{2\times 5}}}
Multiply \frac{1}{2} times \frac{7}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{113}{45}}{\frac{5}{4}+\frac{7}{10}}}
Do the multiplications in the fraction \frac{1\times 7}{2\times 5}.
\sqrt{\frac{\frac{113}{45}}{\frac{25}{20}+\frac{14}{20}}}
Least common multiple of 4 and 10 is 20. Convert \frac{5}{4} and \frac{7}{10} to fractions with denominator 20.
\sqrt{\frac{\frac{113}{45}}{\frac{25+14}{20}}}
Since \frac{25}{20} and \frac{14}{20} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{113}{45}}{\frac{39}{20}}}
Add 25 and 14 to get 39.
\sqrt{\frac{113}{45}\times \frac{20}{39}}
Divide \frac{113}{45} by \frac{39}{20} by multiplying \frac{113}{45} by the reciprocal of \frac{39}{20}.
\sqrt{\frac{113\times 20}{45\times 39}}
Multiply \frac{113}{45} times \frac{20}{39} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{2260}{1755}}
Do the multiplications in the fraction \frac{113\times 20}{45\times 39}.
\sqrt{\frac{452}{351}}
Reduce the fraction \frac{2260}{1755} to lowest terms by extracting and canceling out 5.
\frac{\sqrt{452}}{\sqrt{351}}
Rewrite the square root of the division \sqrt{\frac{452}{351}} as the division of square roots \frac{\sqrt{452}}{\sqrt{351}}.
\frac{2\sqrt{113}}{\sqrt{351}}
Factor 452=2^{2}\times 113. Rewrite the square root of the product \sqrt{2^{2}\times 113} as the product of square roots \sqrt{2^{2}}\sqrt{113}. Take the square root of 2^{2}.
\frac{2\sqrt{113}}{3\sqrt{39}}
Factor 351=3^{2}\times 39. Rewrite the square root of the product \sqrt{3^{2}\times 39} as the product of square roots \sqrt{3^{2}}\sqrt{39}. Take the square root of 3^{2}.
\frac{2\sqrt{113}\sqrt{39}}{3\left(\sqrt{39}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{113}}{3\sqrt{39}} by multiplying numerator and denominator by \sqrt{39}.
\frac{2\sqrt{113}\sqrt{39}}{3\times 39}
The square of \sqrt{39} is 39.
\frac{2\sqrt{4407}}{3\times 39}
To multiply \sqrt{113} and \sqrt{39}, multiply the numbers under the square root.
\frac{2\sqrt{4407}}{117}
Multiply 3 and 39 to get 117.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}