Evaluate
\frac{\sqrt{6}}{2}\approx 1.224744871
Share
Copied to clipboard
\sqrt{\frac{\left(\frac{2}{5}+\frac{5}{5}-\frac{1}{2}\right)\times \frac{10}{9}+2}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Convert 1 to fraction \frac{5}{5}.
\sqrt{\frac{\left(\frac{2+5}{5}-\frac{1}{2}\right)\times \frac{10}{9}+2}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Since \frac{2}{5} and \frac{5}{5} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\left(\frac{7}{5}-\frac{1}{2}\right)\times \frac{10}{9}+2}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Add 2 and 5 to get 7.
\sqrt{\frac{\left(\frac{14}{10}-\frac{5}{10}\right)\times \frac{10}{9}+2}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Least common multiple of 5 and 2 is 10. Convert \frac{7}{5} and \frac{1}{2} to fractions with denominator 10.
\sqrt{\frac{\frac{14-5}{10}\times \frac{10}{9}+2}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Since \frac{14}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{9}{10}\times \frac{10}{9}+2}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Subtract 5 from 14 to get 9.
\sqrt{\frac{1+2}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Cancel out \frac{9}{10} and its reciprocal \frac{10}{9}.
\sqrt{\frac{3}{\frac{10}{3}\times \frac{6}{5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Add 1 and 2 to get 3.
\sqrt{\frac{3}{\frac{10\times 6}{3\times 5}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Multiply \frac{10}{3} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{3}{\frac{60}{15}\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Do the multiplications in the fraction \frac{10\times 6}{3\times 5}.
\sqrt{\frac{3}{4\left(\frac{7}{4}\times \frac{1}{7}+\frac{1}{4}\right)}}
Divide 60 by 15 to get 4.
\sqrt{\frac{3}{4\left(\frac{7\times 1}{4\times 7}+\frac{1}{4}\right)}}
Multiply \frac{7}{4} times \frac{1}{7} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{3}{4\left(\frac{1}{4}+\frac{1}{4}\right)}}
Cancel out 7 in both numerator and denominator.
\sqrt{\frac{3}{4\times \frac{1+1}{4}}}
Since \frac{1}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{3}{4\times \frac{2}{4}}}
Add 1 and 1 to get 2.
\sqrt{\frac{3}{4\times \frac{1}{2}}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{3}{\frac{4}{2}}}
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
\sqrt{\frac{3}{2}}
Divide 4 by 2 to get 2.
\frac{\sqrt{3}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{6}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}