Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{\frac{1}{5}+\frac{3\times 8}{4\times 9}}{\frac{13}{5}}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Multiply \frac{3}{4} times \frac{8}{9} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{1}{5}+\frac{24}{36}}{\frac{13}{5}}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Do the multiplications in the fraction \frac{3\times 8}{4\times 9}.
\sqrt{\frac{\frac{1}{5}+\frac{2}{3}}{\frac{13}{5}}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Reduce the fraction \frac{24}{36} to lowest terms by extracting and canceling out 12.
\sqrt{\frac{\frac{3}{15}+\frac{10}{15}}{\frac{13}{5}}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Least common multiple of 5 and 3 is 15. Convert \frac{1}{5} and \frac{2}{3} to fractions with denominator 15.
\sqrt{\frac{\frac{3+10}{15}}{\frac{13}{5}}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Since \frac{3}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\sqrt{\frac{\frac{13}{15}}{\frac{13}{5}}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Add 3 and 10 to get 13.
\sqrt{\frac{13}{15}\times \frac{5}{13}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Divide \frac{13}{15} by \frac{13}{5} by multiplying \frac{13}{15} by the reciprocal of \frac{13}{5}.
\sqrt{\frac{13\times 5}{15\times 13}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Multiply \frac{13}{15} times \frac{5}{13} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{5}{15}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Cancel out 13 in both numerator and denominator.
\sqrt{\frac{1}{3}\left(\frac{5}{6}+\frac{3}{2}-\frac{1}{12}\right)+\frac{1}{2}}
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{1}{3}\left(\frac{5}{6}+\frac{9}{6}-\frac{1}{12}\right)+\frac{1}{2}}
Least common multiple of 6 and 2 is 6. Convert \frac{5}{6} and \frac{3}{2} to fractions with denominator 6.
\sqrt{\frac{1}{3}\left(\frac{5+9}{6}-\frac{1}{12}\right)+\frac{1}{2}}
Since \frac{5}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1}{3}\left(\frac{14}{6}-\frac{1}{12}\right)+\frac{1}{2}}
Add 5 and 9 to get 14.
\sqrt{\frac{1}{3}\left(\frac{7}{3}-\frac{1}{12}\right)+\frac{1}{2}}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1}{3}\left(\frac{28}{12}-\frac{1}{12}\right)+\frac{1}{2}}
Least common multiple of 3 and 12 is 12. Convert \frac{7}{3} and \frac{1}{12} to fractions with denominator 12.
\sqrt{\frac{1}{3}\times \frac{28-1}{12}+\frac{1}{2}}
Since \frac{28}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{3}\times \frac{27}{12}+\frac{1}{2}}
Subtract 1 from 28 to get 27.
\sqrt{\frac{1}{3}\times \frac{9}{4}+\frac{1}{2}}
Reduce the fraction \frac{27}{12} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{1\times 9}{3\times 4}+\frac{1}{2}}
Multiply \frac{1}{3} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{9}{12}+\frac{1}{2}}
Do the multiplications in the fraction \frac{1\times 9}{3\times 4}.
\sqrt{\frac{3}{4}+\frac{1}{2}}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{3}{4}+\frac{2}{4}}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\sqrt{\frac{3+2}{4}}
Since \frac{3}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{5}{4}}
Add 3 and 2 to get 5.
\frac{\sqrt{5}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{5}{4}} as the division of square roots \frac{\sqrt{5}}{\sqrt{4}}.
\frac{\sqrt{5}}{2}
Calculate the square root of 4 and get 2.