Evaluate
\frac{\sqrt{138}}{6}\approx 1.957890021
Share
Copied to clipboard
\sqrt{\frac{\frac{\frac{\frac{7}{5}\times \frac{1}{10}}{\frac{14}{5}}\left(\frac{7}{12}+\frac{2}{3}\right)^{2}+1}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}{\frac{1}{2}}}
Divide \left(\frac{3}{4}\right)^{2} by \left(\frac{3}{4}\right)^{2} to get 1.
\sqrt{\frac{\left(\frac{\frac{7}{5}\times \frac{1}{10}}{\frac{14}{5}}\left(\frac{7}{12}+\frac{2}{3}\right)^{2}+1\right)\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Divide \frac{\frac{\frac{7}{5}\times \frac{1}{10}}{\frac{14}{5}}\left(\frac{7}{12}+\frac{2}{3}\right)^{2}+1}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}} by \frac{1}{2} by multiplying \frac{\frac{\frac{7}{5}\times \frac{1}{10}}{\frac{14}{5}}\left(\frac{7}{12}+\frac{2}{3}\right)^{2}+1}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}} by the reciprocal of \frac{1}{2}.
\sqrt{\frac{\left(\frac{\frac{7}{50}}{\frac{14}{5}}\left(\frac{7}{12}+\frac{2}{3}\right)^{2}+1\right)\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Multiply \frac{7}{5} and \frac{1}{10} to get \frac{7}{50}.
\sqrt{\frac{\left(\frac{7}{50}\times \frac{5}{14}\left(\frac{7}{12}+\frac{2}{3}\right)^{2}+1\right)\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Divide \frac{7}{50} by \frac{14}{5} by multiplying \frac{7}{50} by the reciprocal of \frac{14}{5}.
\sqrt{\frac{\left(\frac{1}{20}\left(\frac{7}{12}+\frac{2}{3}\right)^{2}+1\right)\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Multiply \frac{7}{50} and \frac{5}{14} to get \frac{1}{20}.
\sqrt{\frac{\left(\frac{1}{20}\times \left(\frac{5}{4}\right)^{2}+1\right)\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Add \frac{7}{12} and \frac{2}{3} to get \frac{5}{4}.
\sqrt{\frac{\left(\frac{1}{20}\times \frac{25}{16}+1\right)\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
\sqrt{\frac{\left(\frac{5}{64}+1\right)\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Multiply \frac{1}{20} and \frac{25}{16} to get \frac{5}{64}.
\sqrt{\frac{\frac{69}{64}\times 2}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Add \frac{5}{64} and 1 to get \frac{69}{64}.
\sqrt{\frac{\frac{69}{32}}{\left(\frac{1}{\frac{1}{2}}-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Multiply \frac{69}{64} and 2 to get \frac{69}{32}.
\sqrt{\frac{\frac{69}{32}}{\left(1\times 2-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
\sqrt{\frac{\frac{69}{32}}{\left(2-\left(\frac{16}{5}-\frac{7}{10}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Multiply 1 and 2 to get 2.
\sqrt{\frac{\frac{69}{32}}{\left(2-\left(\frac{5}{2}-\frac{3}{4}\right)\right)\times \left(\frac{3}{2}\right)^{2}}}
Subtract \frac{7}{10} from \frac{16}{5} to get \frac{5}{2}.
\sqrt{\frac{\frac{69}{32}}{\left(2-\frac{7}{4}\right)\times \left(\frac{3}{2}\right)^{2}}}
Subtract \frac{3}{4} from \frac{5}{2} to get \frac{7}{4}.
\sqrt{\frac{\frac{69}{32}}{\frac{1}{4}\times \left(\frac{3}{2}\right)^{2}}}
Subtract \frac{7}{4} from 2 to get \frac{1}{4}.
\sqrt{\frac{\frac{69}{32}}{\frac{1}{4}\times \frac{9}{4}}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\sqrt{\frac{\frac{69}{32}}{\frac{9}{16}}}
Multiply \frac{1}{4} and \frac{9}{4} to get \frac{9}{16}.
\sqrt{\frac{69}{32}\times \frac{16}{9}}
Divide \frac{69}{32} by \frac{9}{16} by multiplying \frac{69}{32} by the reciprocal of \frac{9}{16}.
\sqrt{\frac{23}{6}}
Multiply \frac{69}{32} and \frac{16}{9} to get \frac{23}{6}.
\frac{\sqrt{23}}{\sqrt{6}}
Rewrite the square root of the division \sqrt{\frac{23}{6}} as the division of square roots \frac{\sqrt{23}}{\sqrt{6}}.
\frac{\sqrt{23}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{23}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\sqrt{23}\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{\sqrt{138}}{6}
To multiply \sqrt{23} and \sqrt{6}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}