\sqrt { [ \frac { 4 } { 13 } \times ( 7 - \frac { 1 } { 5 } \times \frac { 75 } { 4 } ) ] : [ \frac { 16 } { 3 } \times ( \frac { 4 } { 3 } + \frac { 5 } { 6 } : \frac { 1 } { 2 } ) ] + \sqrt { ( \frac { 53 } { 5 } - \frac { 63 } { 20 } - 5 ) \times ( 1 + \frac { 1 } { 4 } } }
Evaluate
\frac{\sqrt{29}}{4}\approx 1.346291202
Share
Copied to clipboard
\sqrt{\frac{\frac{4}{13}\left(7-\frac{1\times 75}{5\times 4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Multiply \frac{1}{5} times \frac{75}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{\frac{4}{13}\left(7-\frac{75}{20}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Do the multiplications in the fraction \frac{1\times 75}{5\times 4}.
\sqrt{\frac{\frac{4}{13}\left(7-\frac{15}{4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Reduce the fraction \frac{75}{20} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{\frac{4}{13}\left(\frac{28}{4}-\frac{15}{4}\right)}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Convert 7 to fraction \frac{28}{4}.
\sqrt{\frac{\frac{4}{13}\times \frac{28-15}{4}}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Since \frac{28}{4} and \frac{15}{4} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{\frac{4}{13}\times \frac{13}{4}}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Subtract 15 from 28 to get 13.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{\frac{5}{6}}{\frac{1}{2}}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Cancel out \frac{4}{13} and its reciprocal \frac{13}{4}.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5}{6}\times 2\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Divide \frac{5}{6} by \frac{1}{2} by multiplying \frac{5}{6} by the reciprocal of \frac{1}{2}.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5\times 2}{6}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Express \frac{5}{6}\times 2 as a single fraction.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{10}{6}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Multiply 5 and 2 to get 10.
\sqrt{\frac{1}{\frac{16}{3}\left(\frac{4}{3}+\frac{5}{3}\right)}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\sqrt{\frac{1}{\frac{16}{3}\times \frac{4+5}{3}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Since \frac{4}{3} and \frac{5}{3} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1}{\frac{16}{3}\times \frac{9}{3}}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Add 4 and 5 to get 9.
\sqrt{\frac{1}{\frac{16}{3}\times 3}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Divide 9 by 3 to get 3.
\sqrt{\frac{1}{16}+\sqrt{\left(\frac{53}{5}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Cancel out 3 and 3.
\sqrt{\frac{1}{16}+\sqrt{\left(\frac{212}{20}-\frac{63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Least common multiple of 5 and 20 is 20. Convert \frac{53}{5} and \frac{63}{20} to fractions with denominator 20.
\sqrt{\frac{1}{16}+\sqrt{\left(\frac{212-63}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Since \frac{212}{20} and \frac{63}{20} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{16}+\sqrt{\left(\frac{149}{20}-5\right)\left(1+\frac{1}{4}\right)}}
Subtract 63 from 212 to get 149.
\sqrt{\frac{1}{16}+\sqrt{\left(\frac{149}{20}-\frac{100}{20}\right)\left(1+\frac{1}{4}\right)}}
Convert 5 to fraction \frac{100}{20}.
\sqrt{\frac{1}{16}+\sqrt{\frac{149-100}{20}\left(1+\frac{1}{4}\right)}}
Since \frac{149}{20} and \frac{100}{20} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{1}{16}+\sqrt{\frac{49}{20}\left(1+\frac{1}{4}\right)}}
Subtract 100 from 149 to get 49.
\sqrt{\frac{1}{16}+\sqrt{\frac{49}{20}\left(\frac{4}{4}+\frac{1}{4}\right)}}
Convert 1 to fraction \frac{4}{4}.
\sqrt{\frac{1}{16}+\sqrt{\frac{49}{20}\times \frac{4+1}{4}}}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{1}{16}+\sqrt{\frac{49}{20}\times \frac{5}{4}}}
Add 4 and 1 to get 5.
\sqrt{\frac{1}{16}+\sqrt{\frac{49\times 5}{20\times 4}}}
Multiply \frac{49}{20} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{1}{16}+\sqrt{\frac{245}{80}}}
Do the multiplications in the fraction \frac{49\times 5}{20\times 4}.
\sqrt{\frac{1}{16}+\sqrt{\frac{49}{16}}}
Reduce the fraction \frac{245}{80} to lowest terms by extracting and canceling out 5.
\sqrt{\frac{1}{16}+\frac{7}{4}}
Rewrite the square root of the division \frac{49}{16} as the division of square roots \frac{\sqrt{49}}{\sqrt{16}}. Take the square root of both numerator and denominator.
\sqrt{\frac{1}{16}+\frac{28}{16}}
Least common multiple of 16 and 4 is 16. Convert \frac{1}{16} and \frac{7}{4} to fractions with denominator 16.
\sqrt{\frac{1+28}{16}}
Since \frac{1}{16} and \frac{28}{16} have the same denominator, add them by adding their numerators.
\sqrt{\frac{29}{16}}
Add 1 and 28 to get 29.
\frac{\sqrt{29}}{\sqrt{16}}
Rewrite the square root of the division \sqrt{\frac{29}{16}} as the division of square roots \frac{\sqrt{29}}{\sqrt{16}}.
\frac{\sqrt{29}}{4}
Calculate the square root of 16 and get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}