Evaluate
\frac{8}{15}\approx 0.533333333
Factor
\frac{2 ^ {3}}{3 \cdot 5} = 0.5333333333333333
Share
Copied to clipboard
\sqrt{\left(\frac{9}{12}+\frac{1}{12}-\left(\frac{1}{2}-\frac{1}{5}\right)-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Least common multiple of 4 and 12 is 12. Convert \frac{3}{4} and \frac{1}{12} to fractions with denominator 12.
\sqrt{\left(\frac{9+1}{12}-\left(\frac{1}{2}-\frac{1}{5}\right)-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Since \frac{9}{12} and \frac{1}{12} have the same denominator, add them by adding their numerators.
\sqrt{\left(\frac{10}{12}-\left(\frac{1}{2}-\frac{1}{5}\right)-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Add 9 and 1 to get 10.
\sqrt{\left(\frac{5}{6}-\left(\frac{1}{2}-\frac{1}{5}\right)-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Reduce the fraction \frac{10}{12} to lowest terms by extracting and canceling out 2.
\sqrt{\left(\frac{5}{6}-\left(\frac{5}{10}-\frac{2}{10}\right)-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Least common multiple of 2 and 5 is 10. Convert \frac{1}{2} and \frac{1}{5} to fractions with denominator 10.
\sqrt{\left(\frac{5}{6}-\frac{5-2}{10}-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Since \frac{5}{10} and \frac{2}{10} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\left(\frac{5}{6}-\frac{3}{10}-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Subtract 2 from 5 to get 3.
\sqrt{\left(\frac{25}{30}-\frac{9}{30}-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Least common multiple of 6 and 10 is 30. Convert \frac{5}{6} and \frac{3}{10} to fractions with denominator 30.
\sqrt{\left(\frac{25-9}{30}-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Since \frac{25}{30} and \frac{9}{30} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\left(\frac{16}{30}-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Subtract 9 from 25 to get 16.
\sqrt{\left(\frac{8}{15}-\frac{4}{9}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Reduce the fraction \frac{16}{30} to lowest terms by extracting and canceling out 2.
\sqrt{\left(\frac{24}{45}-\frac{20}{45}\right)\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Least common multiple of 15 and 9 is 45. Convert \frac{8}{15} and \frac{4}{9} to fractions with denominator 45.
\sqrt{\frac{24-20}{45}\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Since \frac{24}{45} and \frac{20}{45} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{4}{45}\left(\frac{11}{3}-\left(\frac{1}{5}+\frac{4}{15}\right)\right)}
Subtract 20 from 24 to get 4.
\sqrt{\frac{4}{45}\left(\frac{11}{3}-\left(\frac{3}{15}+\frac{4}{15}\right)\right)}
Least common multiple of 5 and 15 is 15. Convert \frac{1}{5} and \frac{4}{15} to fractions with denominator 15.
\sqrt{\frac{4}{45}\left(\frac{11}{3}-\frac{3+4}{15}\right)}
Since \frac{3}{15} and \frac{4}{15} have the same denominator, add them by adding their numerators.
\sqrt{\frac{4}{45}\left(\frac{11}{3}-\frac{7}{15}\right)}
Add 3 and 4 to get 7.
\sqrt{\frac{4}{45}\left(\frac{55}{15}-\frac{7}{15}\right)}
Least common multiple of 3 and 15 is 15. Convert \frac{11}{3} and \frac{7}{15} to fractions with denominator 15.
\sqrt{\frac{4}{45}\times \frac{55-7}{15}}
Since \frac{55}{15} and \frac{7}{15} have the same denominator, subtract them by subtracting their numerators.
\sqrt{\frac{4}{45}\times \frac{48}{15}}
Subtract 7 from 55 to get 48.
\sqrt{\frac{4}{45}\times \frac{16}{5}}
Reduce the fraction \frac{48}{15} to lowest terms by extracting and canceling out 3.
\sqrt{\frac{4\times 16}{45\times 5}}
Multiply \frac{4}{45} times \frac{16}{5} by multiplying numerator times numerator and denominator times denominator.
\sqrt{\frac{64}{225}}
Do the multiplications in the fraction \frac{4\times 16}{45\times 5}.
\frac{8}{15}
Rewrite the square root of the division \frac{64}{225} as the division of square roots \frac{\sqrt{64}}{\sqrt{225}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}