Solve for x
x=-\sin(t)+1
Solve for t
t=-\arcsin(1-x)+2\pi n_{1}+\pi \text{, }n_{1}\in \mathrm{Z}
t=\arcsin(1-x)+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }x\geq 0\text{ and }x\leq 2
Graph
Share
Copied to clipboard
1-x=\sin(t)
Swap sides so that all variable terms are on the left hand side.
-x=\sin(t)-1
Subtract 1 from both sides.
\frac{-x}{-1}=\frac{\sin(t)-1}{-1}
Divide both sides by -1.
x=\frac{\sin(t)-1}{-1}
Dividing by -1 undoes the multiplication by -1.
x=-\sin(t)+1
Divide \sin(t)-1 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}