Skip to main content
Verify
true
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}}{2}\cos(30)+\cos(60)\sin(30)=\sin(90)
Get the value of \sin(60) from trigonometric values table.
\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}+\cos(60)\sin(30)=\sin(90)
Get the value of \cos(30) from trigonometric values table.
\left(\frac{\sqrt{3}}{2}\right)^{2}+\cos(60)\sin(30)=\sin(90)
Multiply \frac{\sqrt{3}}{2} and \frac{\sqrt{3}}{2} to get \left(\frac{\sqrt{3}}{2}\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\cos(60)\sin(30)=\sin(90)
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{2}\sin(30)=\sin(90)
Get the value of \cos(60) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{2}\times \frac{1}{2}=\sin(90)
Get the value of \sin(30) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{4}=\sin(90)
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\frac{\left(\sqrt{3}\right)^{2}}{4}+\frac{1}{4}=\sin(90)
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(\sqrt{3}\right)^{2}+1}{4}=\sin(90)
Since \frac{\left(\sqrt{3}\right)^{2}}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{3}\right)^{2}+1}{4}=1
Get the value of \sin(90) from trigonometric values table.
\frac{3+1}{4}=1
The square of \sqrt{3} is 3.
\frac{4}{4}=1
Add 3 and 1 to get 4.
1=1
Divide 4 by 4 to get 1.
\text{true}
Compare 1 and 1.