\sin ( x ) = \sum ( 4 + \pi )
Solve for Σ
Σ=\frac{\sin(x)}{\pi +4}
Solve for x
x=-\arcsin(\left(\pi +4\right)Σ)+2\pi n_{1}+\pi \text{, }n_{1}\in \mathrm{Z}
x=\arcsin(\left(\pi +4\right)Σ)+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }|Σ|\leq \frac{1}{\pi +4}
Graph
Share
Copied to clipboard
\sin(x)=4Σ+Σ\pi
Use the distributive property to multiply Σ by 4+\pi .
4Σ+Σ\pi =\sin(x)
Swap sides so that all variable terms are on the left hand side.
\left(4+\pi \right)Σ=\sin(x)
Combine all terms containing Σ.
\left(\pi +4\right)Σ=\sin(x)
The equation is in standard form.
\frac{\left(\pi +4\right)Σ}{\pi +4}=\frac{\sin(x)}{\pi +4}
Divide both sides by 4+\pi .
Σ=\frac{\sin(x)}{\pi +4}
Dividing by 4+\pi undoes the multiplication by 4+\pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}