Solve for k (complex solution)
k=\frac{-\sin(x)-1}{\sin(x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Solve for k
k=-\frac{1}{\sin(x)}-1
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}
Solve for x
x=\arcsin(\frac{1}{k+1})+2\pi n_{1}+\pi \text{, }n_{1}\in \mathrm{Z}
x=-\arcsin(\frac{1}{k+1})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }k\geq 0\text{ or }k\leq -2
Graph
Share
Copied to clipboard
k\sin(x)+1=\sin(-x)
Swap sides so that all variable terms are on the left hand side.
k\sin(x)=\sin(-x)-1
Subtract 1 from both sides.
\sin(x)k=-\sin(x)-1
The equation is in standard form.
\frac{\sin(x)k}{\sin(x)}=-\frac{\sin(x)+1}{\sin(x)}
Divide both sides by \sin(x).
k=-\frac{\sin(x)+1}{\sin(x)}
Dividing by \sin(x) undoes the multiplication by \sin(x).
k=-\left(\frac{1}{\sin(x)}+1\right)
Divide -\left(\sin(x)+1\right) by \sin(x).
k\sin(x)+1=\sin(-x)
Swap sides so that all variable terms are on the left hand side.
k\sin(x)=\sin(-x)-1
Subtract 1 from both sides.
\sin(x)k=-\sin(x)-1
The equation is in standard form.
\frac{\sin(x)k}{\sin(x)}=-\frac{\sin(x)+1}{\sin(x)}
Divide both sides by \sin(x).
k=-\frac{\sin(x)+1}{\sin(x)}
Dividing by \sin(x) undoes the multiplication by \sin(x).
k=-\left(\frac{1}{\sin(x)}+1\right)
Divide -\left(\sin(x)+1\right) by \sin(x).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}