Solve for γ
\gamma \in \mathrm{R}
\exists n_{2}\in \mathrm{Z}\text{ : }\left(\gamma =2\pi n_{2}+\alpha +\beta -\frac{\pi }{6}\text{ or }\gamma =2\pi n_{2}+\alpha +\beta -\frac{5\pi }{6}\right)\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(\gamma =2\pi n_{3}+\alpha -\beta +\frac{\pi }{3}\text{ or }\gamma =2\pi n_{3}+\alpha -\beta +\frac{5\pi }{3}\right)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\gamma =\pi n_{4}+\beta -\alpha +\frac{\pi }{4}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\gamma =\pi n_{1}+\beta -\alpha +\frac{\pi }{2}
Solve for β
\beta \in \mathrm{R}
\exists n_{2}\in \mathrm{Z}\text{ : }\beta =\pi n_{2}+\alpha +\gamma -\frac{\pi }{4}
\exists n_{3}\in \mathrm{Z}\text{ : }\left(\gamma =\frac{23}{24}\pi +\left(-\frac{1}{2}\right)\pi n_{2}+\pi n_{3}\text{ or }\gamma =\frac{31}{24}\pi +\left(-\frac{1}{2}\right)\pi n_{2}+\pi n_{3}\right)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(\alpha =\frac{13}{24}\pi +\pi n_{4}+\left(-\frac{1}{2}\right)\pi n_{2}\text{ or }\alpha =\frac{29}{24}\pi +\pi n_{4}+\left(-\frac{1}{2}\right)\pi n_{2}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\beta =\pi n_{1}+\alpha +\gamma -\frac{\pi }{2}
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}