Verify
true
Quiz
Trigonometry
5 problems similar to:
\sin ( 60 ) \cos ( 30 ) + \cos ( 60 ) \sin ( 30 ) = \sin ( 90 )
Share
Copied to clipboard
\frac{\sqrt{3}}{2}\cos(30)+\cos(60)\sin(30)=\sin(90)
Get the value of \sin(60) from trigonometric values table.
\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}+\cos(60)\sin(30)=\sin(90)
Get the value of \cos(30) from trigonometric values table.
\left(\frac{\sqrt{3}}{2}\right)^{2}+\cos(60)\sin(30)=\sin(90)
Multiply \frac{\sqrt{3}}{2} and \frac{\sqrt{3}}{2} to get \left(\frac{\sqrt{3}}{2}\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\cos(60)\sin(30)=\sin(90)
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{2}\sin(30)=\sin(90)
Get the value of \cos(60) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{2}\times \frac{1}{2}=\sin(90)
Get the value of \sin(30) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\frac{1}{4}=\sin(90)
Multiply \frac{1}{2} and \frac{1}{2} to get \frac{1}{4}.
\frac{\left(\sqrt{3}\right)^{2}}{4}+\frac{1}{4}=\sin(90)
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(\sqrt{3}\right)^{2}+1}{4}=\sin(90)
Since \frac{\left(\sqrt{3}\right)^{2}}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\left(\sqrt{3}\right)^{2}+1}{4}=1
Get the value of \sin(90) from trigonometric values table.
\frac{3+1}{4}=1
The square of \sqrt{3} is 3.
\frac{4}{4}=1
Add 3 and 1 to get 4.
1=1
Divide 4 by 4 to get 1.
\text{true}
Compare 1 and 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}