Evaluate
\frac{\sqrt{2}-\sqrt{3}}{4}\approx -0.079459311
Share
Copied to clipboard
\frac{1}{2}\cos(45)-\cos(60)\sin(60)
Get the value of \sin(30) from trigonometric values table.
\frac{1}{2}\times \frac{\sqrt{2}}{2}-\cos(60)\sin(60)
Get the value of \cos(45) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}-\cos(60)\sin(60)
Multiply \frac{1}{2} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}}{2\times 2}-\frac{1}{2}\sin(60)
Get the value of \cos(60) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}-\frac{1}{2}\times \frac{\sqrt{3}}{2}
Get the value of \sin(60) from trigonometric values table.
\frac{\sqrt{2}}{2\times 2}-\frac{\sqrt{3}}{2\times 2}
Multiply \frac{1}{2} times \frac{\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}}{2\times 2}-\frac{\sqrt{3}}{4}
Multiply 2 and 2 to get 4.
\frac{\sqrt{2}}{4}-\frac{\sqrt{3}}{4}
To add or subtract expressions, expand them to make their denominators the same. Expand 2\times 2.
\frac{\sqrt{2}-\sqrt{3}}{4}
Since \frac{\sqrt{2}}{4} and \frac{\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}