Skip to main content
Differentiate w.r.t. θ_3
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}\theta _{3}}(\sin(\theta _{3}))=\left(\lim_{h\to 0}\frac{\sin(\theta _{3}+h)-\sin(\theta _{3})}{h}\right)
For a function f\left(x\right), the derivative is the limit of \frac{f\left(x+h\right)-f\left(x\right)}{h} as h goes to 0, if that limit exists.
\lim_{h\to 0}\frac{\sin(h+\theta _{3})-\sin(\theta _{3})}{h}
Use the Sum Formula for Sine.
\lim_{h\to 0}\frac{\sin(\theta _{3})\left(\cos(h)-1\right)+\cos(\theta _{3})\sin(h)}{h}
Factor out \sin(\theta _{3}).
\left(\lim_{h\to 0}\sin(\theta _{3})\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\theta _{3})\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Rewrite the limit.
\sin(\theta _{3})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta _{3})\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Use the fact that \theta _{3} is a constant when computing limits as h goes to 0.
\sin(\theta _{3})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta _{3})
The limit \lim_{\theta _{3}\to 0}\frac{\sin(\theta _{3})}{\theta _{3}} is 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
To evaluate the limit \lim_{h\to 0}\frac{\cos(h)-1}{h}, first multiply the numerator and denominator by \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multiply \cos(h)+1 times \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Use the Pythagorean Identity.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Rewrite the limit.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
The limit \lim_{\theta _{3}\to 0}\frac{\sin(\theta _{3})}{\theta _{3}} is 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Use the fact that \frac{\sin(h)}{\cos(h)+1} is continuous at 0.
\cos(\theta _{3})
Substitute the value 0 into the expression \sin(\theta _{3})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta _{3}).