Evaluate
\frac{11-\sqrt{2}}{2}\approx 4.792893219
Share
Copied to clipboard
\frac{1}{2}+4\cos(\frac{\pi }{3})-3\cos(\pi )-\sin(\frac{\pi }{4})
Get the value of \sin(\frac{\pi }{6}) from trigonometric values table.
\frac{1}{2}+4\times \frac{1}{2}-3\cos(\pi )-\sin(\frac{\pi }{4})
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
\frac{1}{2}+2-3\cos(\pi )-\sin(\frac{\pi }{4})
Multiply 4 and \frac{1}{2} to get 2.
\frac{5}{2}-3\cos(\pi )-\sin(\frac{\pi }{4})
Add \frac{1}{2} and 2 to get \frac{5}{2}.
\frac{5}{2}-3\left(-1\right)-\sin(\frac{\pi }{4})
Get the value of \cos(\pi ) from trigonometric values table.
\frac{5}{2}-\left(-3\right)-\sin(\frac{\pi }{4})
Multiply 3 and -1 to get -3.
\frac{5}{2}+3-\sin(\frac{\pi }{4})
The opposite of -3 is 3.
\frac{11}{2}-\sin(\frac{\pi }{4})
Add \frac{5}{2} and 3 to get \frac{11}{2}.
\frac{11}{2}-\frac{\sqrt{2}}{2}
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\frac{11+\sqrt{2}}{2}
Since \frac{11}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}