Verify
true
Share
Copied to clipboard
\frac{\sqrt{3}}{2}\tan(\frac{\pi }{6})+\sin(\frac{\pi }{2})\cos(\frac{\pi }{3})=2\left(\sin(\frac{\pi }{4})\right)^{2}
Get the value of \sin(\frac{\pi }{3}) from trigonometric values table.
\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{3}+\sin(\frac{\pi }{2})\cos(\frac{\pi }{3})=2\left(\sin(\frac{\pi }{4})\right)^{2}
Get the value of \tan(\frac{\pi }{6}) from trigonometric values table.
\frac{\sqrt{3}\sqrt{3}}{2\times 3}+\sin(\frac{\pi }{2})\cos(\frac{\pi }{3})=2\left(\sin(\frac{\pi }{4})\right)^{2}
Multiply \frac{\sqrt{3}}{2} times \frac{\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{3}\sqrt{3}}{2\times 3}+1\cos(\frac{\pi }{3})=2\left(\sin(\frac{\pi }{4})\right)^{2}
Get the value of \sin(\frac{\pi }{2}) from trigonometric values table.
\frac{\sqrt{3}\sqrt{3}}{2\times 3}+1\times \frac{1}{2}=2\left(\sin(\frac{\pi }{4})\right)^{2}
Get the value of \cos(\frac{\pi }{3}) from trigonometric values table.
\frac{\sqrt{3}\sqrt{3}}{2\times 3}+\frac{1}{2}=2\left(\sin(\frac{\pi }{4})\right)^{2}
Multiply 1 and \frac{1}{2} to get \frac{1}{2}.
\frac{\sqrt{3}\sqrt{3}}{2\times 3}+\frac{3}{2\times 3}=2\left(\sin(\frac{\pi }{4})\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\times 3 and 2 is 2\times 3. Multiply \frac{1}{2} times \frac{3}{3}.
\frac{\sqrt{3}\sqrt{3}+3}{2\times 3}=2\left(\sin(\frac{\pi }{4})\right)^{2}
Since \frac{\sqrt{3}\sqrt{3}}{2\times 3} and \frac{3}{2\times 3} have the same denominator, add them by adding their numerators.
\frac{3+3}{2\times 3}=2\left(\sin(\frac{\pi }{4})\right)^{2}
Do the multiplications in \sqrt{3}\sqrt{3}+3.
\frac{6}{2\times 3}=2\left(\sin(\frac{\pi }{4})\right)^{2}
Do the calculations in 3+3.
\frac{6}{2\times 3}=2\times \left(\frac{\sqrt{2}}{2}\right)^{2}
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\frac{6}{2\times 3}=2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{6}{2\times 3}=\frac{2\left(\sqrt{2}\right)^{2}}{2^{2}}
Express 2\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} as a single fraction.
\frac{6}{2\times 3}=\frac{\left(\sqrt{2}\right)^{2}}{2}
Cancel out 2 in both numerator and denominator.
\frac{6}{6}=\frac{\left(\sqrt{2}\right)^{2}}{2}
Multiply 2 and 3 to get 6.
1=\frac{\left(\sqrt{2}\right)^{2}}{2}
Divide 6 by 6 to get 1.
1=\frac{2}{2}
The square of \sqrt{2} is 2.
1=1
Divide 2 by 2 to get 1.
\text{true}
Compare 1 and 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}