Skip to main content
Evaluate
Tick mark Image

Share

\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
Get the value of \sin(60) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\cos(30)\right)^{2}+\left(\tan(30)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(\tan(30)\right)^{2}
Get the value of \cos(30) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}+\left(\tan(30)\right)^{2}
To raise \frac{\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{2^{2}}+\left(\tan(30)\right)^{2}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}\right)^{2}}{2^{2}}-\frac{3}{4}+\left(\tan(30)\right)^{2}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{3}\right)^{2}}{4}-\frac{3}{4}+\left(\tan(30)\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\tan(30)\right)^{2}
Since \frac{\left(\sqrt{3}\right)^{2}}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\left(\frac{\sqrt{3}}{3}\right)^{2}
Get the value of \tan(30) from trigonometric values table.
\frac{\left(\sqrt{3}\right)^{2}-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36}+\frac{4\left(\sqrt{3}\right)^{2}}{36}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3^{2} is 36. Multiply \frac{\left(\sqrt{3}\right)^{2}-3}{4} times \frac{9}{9}. Multiply \frac{\left(\sqrt{3}\right)^{2}}{3^{2}} times \frac{4}{4}.
\frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)+4\left(\sqrt{3}\right)^{2}}{36}
Since \frac{9\left(\left(\sqrt{3}\right)^{2}-3\right)}{36} and \frac{4\left(\sqrt{3}\right)^{2}}{36} have the same denominator, add them by adding their numerators.
\frac{3-3}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
The square of \sqrt{3} is 3.
\frac{0}{4}+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Subtract 3 from 3 to get 0.
0+\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
Zero divided by any non-zero number gives zero.
0+\frac{3}{3^{2}}
The square of \sqrt{3} is 3.
0+\frac{3}{9}
Calculate 3 to the power of 2 and get 9.
0+\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{1}{3}
Add 0 and \frac{1}{3} to get \frac{1}{3}.