Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{\sqrt{2}}{2}\right)^{2}-x=\left(\sin(\frac{\pi }{4})\right)^{2}+x
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-x=\left(\sin(\frac{\pi }{4})\right)^{2}+x
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{x\times 2^{2}}{2^{2}}=\left(\sin(\frac{\pi }{4})\right)^{2}+x
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\left(\sin(\frac{\pi }{4})\right)^{2}+x
Since \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{x\times 2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\left(\frac{\sqrt{2}}{2}\right)^{2}+x
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+x
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{x\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{x\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{2-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{2-x\times 4}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2-4x}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Multiply -1 and 4 to get -4.
\frac{2-4x}{4}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}-x=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Divide each term of 2-4x by 4 to get \frac{1}{2}-x.
\frac{1}{2}-x=\frac{2+x\times 2^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{1}{2}-x=\frac{2+x\times 4}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}-x=\frac{2+x\times 4}{4}
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}-x=\frac{1}{2}+x
Divide each term of 2+x\times 4 by 4 to get \frac{1}{2}+x.
\frac{1}{2}-x-x=\frac{1}{2}
Subtract x from both sides.
\frac{1}{2}-2x=\frac{1}{2}
Combine -x and -x to get -2x.
-2x=\frac{1}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-2x=0
Subtract \frac{1}{2} from \frac{1}{2} to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -2 is not equal to 0, x must be equal to 0.