Solve for x
x=0
Graph
Share
Copied to clipboard
\left(\frac{\sqrt{2}}{2}\right)^{2}-x=\left(\sin(\frac{\pi }{4})\right)^{2}+x
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-x=\left(\sin(\frac{\pi }{4})\right)^{2}+x
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{x\times 2^{2}}{2^{2}}=\left(\sin(\frac{\pi }{4})\right)^{2}+x
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\left(\sin(\frac{\pi }{4})\right)^{2}+x
Since \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{x\times 2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\left(\frac{\sqrt{2}}{2}\right)^{2}+x
Get the value of \sin(\frac{\pi }{4}) from trigonometric values table.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+x
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+\frac{x\times 2^{2}}{2^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{2^{2}}{2^{2}}.
\frac{\left(\sqrt{2}\right)^{2}-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Since \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{x\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{2-x\times 2^{2}}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{2-x\times 4}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2-4x}{2^{2}}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Multiply -1 and 4 to get -4.
\frac{2-4x}{4}=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}-x=\frac{\left(\sqrt{2}\right)^{2}+x\times 2^{2}}{2^{2}}
Divide each term of 2-4x by 4 to get \frac{1}{2}-x.
\frac{1}{2}-x=\frac{2+x\times 2^{2}}{2^{2}}
The square of \sqrt{2} is 2.
\frac{1}{2}-x=\frac{2+x\times 4}{2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}-x=\frac{2+x\times 4}{4}
Calculate 2 to the power of 2 and get 4.
\frac{1}{2}-x=\frac{1}{2}+x
Divide each term of 2+x\times 4 by 4 to get \frac{1}{2}+x.
\frac{1}{2}-x-x=\frac{1}{2}
Subtract x from both sides.
\frac{1}{2}-2x=\frac{1}{2}
Combine -x and -x to get -2x.
-2x=\frac{1}{2}-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
-2x=0
Subtract \frac{1}{2} from \frac{1}{2} to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -2 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}