Solve for α
\left\{\begin{matrix}\alpha =\pi n_{6}+\beta \text{, }n_{6}\in \mathrm{Z}\text{; }\alpha =\pi n_{7}-\beta \text{, }n_{7}\in \mathrm{Z}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\left(\beta \geq 2\pi n_{1}\text{ and }\beta \leq 2\pi n_{1}+\pi \right)\\\alpha =\pi n_{4}-\beta \text{, }n_{4}\in \mathrm{Z}\text{; }\alpha =\pi n_{5}+\beta \text{, }n_{5}\in \mathrm{Z}\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\beta =\pi n_{3}+\frac{\pi }{2}\\\alpha =\pi n_{4}-\beta \text{, }n_{4}\in \mathrm{Z}\text{; }\alpha =\pi n_{5}+\beta \text{, }n_{5}\in \mathrm{Z}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\beta \geq 2\pi n_{2}+\pi \text{ and }\beta \leq 2\pi n_{2}+2\pi \right)\end{matrix}\right.
Solve for β
\left\{\begin{matrix}\beta =\pi n_{6}+\alpha \text{, }n_{6}\in \mathrm{Z}\text{; }\beta =\pi n_{7}-\alpha \text{, }n_{7}\in \mathrm{Z}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\left(\alpha \geq 2\pi n_{1}\text{ and }\alpha \leq 2\pi n_{1}+\pi \right)\\\beta =\pi n_{4}-\alpha \text{, }n_{4}\in \mathrm{Z}\text{; }\beta =\pi n_{5}+\alpha \text{, }n_{5}\in \mathrm{Z}\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\alpha =\pi n_{3}+\frac{\pi }{2}\\\beta =\pi n_{4}-\alpha \text{, }n_{4}\in \mathrm{Z}\text{; }\beta =\pi n_{5}+\alpha \text{, }n_{5}\in \mathrm{Z}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }\left(\alpha \geq 2\pi n_{2}+\pi \text{ and }\alpha \leq 2\pi n_{2}+2\pi \right)\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}