Skip to main content
Solve for σ_x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Subtract 0 from -2 to get -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Calculate -2 to the power of 2 and get 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Multiply 4 and \frac{4}{9} to get \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Multiply 0 and 0 to get 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Calculate 0 to the power of 2 and get 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Anything times zero gives zero.
\sigma _{x}^{2}=\frac{16}{9}
Add \frac{16}{9} and 0 to get \frac{16}{9}.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
Take the square root of both sides of the equation.
\sigma _{x}^{2}=\left(-2\right)^{2}\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Subtract 0 from -2 to get -2.
\sigma _{x}^{2}=4\times \frac{4}{9}+\left(0\times 0\right)^{2}x
Calculate -2 to the power of 2 and get 4.
\sigma _{x}^{2}=\frac{16}{9}+\left(0\times 0\right)^{2}x
Multiply 4 and \frac{4}{9} to get \frac{16}{9}.
\sigma _{x}^{2}=\frac{16}{9}+0^{2}x
Multiply 0 and 0 to get 0.
\sigma _{x}^{2}=\frac{16}{9}+0x
Calculate 0 to the power of 2 and get 0.
\sigma _{x}^{2}=\frac{16}{9}+0
Anything times zero gives zero.
\sigma _{x}^{2}=\frac{16}{9}
Add \frac{16}{9} and 0 to get \frac{16}{9}.
\sigma _{x}^{2}-\frac{16}{9}=0
Subtract \frac{16}{9} from both sides.
\sigma _{x}=\frac{0±\sqrt{0^{2}-4\left(-\frac{16}{9}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{16}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\sigma _{x}=\frac{0±\sqrt{-4\left(-\frac{16}{9}\right)}}{2}
Square 0.
\sigma _{x}=\frac{0±\sqrt{\frac{64}{9}}}{2}
Multiply -4 times -\frac{16}{9}.
\sigma _{x}=\frac{0±\frac{8}{3}}{2}
Take the square root of \frac{64}{9}.
\sigma _{x}=\frac{4}{3}
Now solve the equation \sigma _{x}=\frac{0±\frac{8}{3}}{2} when ± is plus.
\sigma _{x}=-\frac{4}{3}
Now solve the equation \sigma _{x}=\frac{0±\frac{8}{3}}{2} when ± is minus.
\sigma _{x}=\frac{4}{3} \sigma _{x}=-\frac{4}{3}
The equation is now solved.