Skip to main content
Solve for σ
Tick mark Image

Similar Problems from Web Search

Share

12\sigma ^{2}=88^{2}-12\times 7.33^{2}
Multiply both sides of the equation by 12.
12\sigma ^{2}=7744-12\times 7.33^{2}
Calculate 88 to the power of 2 and get 7744.
12\sigma ^{2}=7744-12\times 53.7289
Calculate 7.33 to the power of 2 and get 53.7289.
12\sigma ^{2}=7744-644.7468
Multiply 12 and 53.7289 to get 644.7468.
12\sigma ^{2}=7099.2532
Subtract 644.7468 from 7744 to get 7099.2532.
\sigma ^{2}=\frac{7099.2532}{12}
Divide both sides by 12.
\sigma ^{2}=\frac{70992532}{120000}
Expand \frac{7099.2532}{12} by multiplying both numerator and the denominator by 10000.
\sigma ^{2}=\frac{17748133}{30000}
Reduce the fraction \frac{70992532}{120000} to lowest terms by extracting and canceling out 4.
\sigma =\frac{\sqrt{53244399}}{300} \sigma =-\frac{\sqrt{53244399}}{300}
Take the square root of both sides of the equation.
12\sigma ^{2}=88^{2}-12\times 7.33^{2}
Multiply both sides of the equation by 12.
12\sigma ^{2}=7744-12\times 7.33^{2}
Calculate 88 to the power of 2 and get 7744.
12\sigma ^{2}=7744-12\times 53.7289
Calculate 7.33 to the power of 2 and get 53.7289.
12\sigma ^{2}=7744-644.7468
Multiply 12 and 53.7289 to get 644.7468.
12\sigma ^{2}=7099.2532
Subtract 644.7468 from 7744 to get 7099.2532.
12\sigma ^{2}-7099.2532=0
Subtract 7099.2532 from both sides.
\sigma =\frac{0±\sqrt{0^{2}-4\times 12\left(-7099.2532\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -7099.2532 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\sigma =\frac{0±\sqrt{-4\times 12\left(-7099.2532\right)}}{2\times 12}
Square 0.
\sigma =\frac{0±\sqrt{-48\left(-7099.2532\right)}}{2\times 12}
Multiply -4 times 12.
\sigma =\frac{0±\sqrt{340764.1536}}{2\times 12}
Multiply -48 times -7099.2532.
\sigma =\frac{0±\frac{2\sqrt{53244399}}{25}}{2\times 12}
Take the square root of 340764.1536.
\sigma =\frac{0±\frac{2\sqrt{53244399}}{25}}{24}
Multiply 2 times 12.
\sigma =\frac{\sqrt{53244399}}{300}
Now solve the equation \sigma =\frac{0±\frac{2\sqrt{53244399}}{25}}{24} when ± is plus.
\sigma =-\frac{\sqrt{53244399}}{300}
Now solve the equation \sigma =\frac{0±\frac{2\sqrt{53244399}}{25}}{24} when ± is minus.
\sigma =\frac{\sqrt{53244399}}{300} \sigma =-\frac{\sqrt{53244399}}{300}
The equation is now solved.