Solve for x
x=\frac{13\sigma +17}{100}
Solve for σ
\sigma =\frac{100x-17}{13}
Graph
Share
Copied to clipboard
\sigma =\frac{x-0.17}{0.13}
Subtract 0.3 from 0.43 to get 0.13.
\sigma =\frac{x}{0.13}+\frac{-0.17}{0.13}
Divide each term of x-0.17 by 0.13 to get \frac{x}{0.13}+\frac{-0.17}{0.13}.
\sigma =\frac{x}{0.13}+\frac{-17}{13}
Expand \frac{-0.17}{0.13} by multiplying both numerator and the denominator by 100.
\sigma =\frac{x}{0.13}-\frac{17}{13}
Fraction \frac{-17}{13} can be rewritten as -\frac{17}{13} by extracting the negative sign.
\frac{x}{0.13}-\frac{17}{13}=\sigma
Swap sides so that all variable terms are on the left hand side.
\frac{x}{0.13}=\sigma +\frac{17}{13}
Add \frac{17}{13} to both sides.
\frac{100}{13}x=\sigma +\frac{17}{13}
The equation is in standard form.
\frac{\frac{100}{13}x}{\frac{100}{13}}=\frac{\sigma +\frac{17}{13}}{\frac{100}{13}}
Divide both sides of the equation by \frac{100}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\sigma +\frac{17}{13}}{\frac{100}{13}}
Dividing by \frac{100}{13} undoes the multiplication by \frac{100}{13}.
x=\frac{13\sigma +17}{100}
Divide \sigma +\frac{17}{13} by \frac{100}{13} by multiplying \sigma +\frac{17}{13} by the reciprocal of \frac{100}{13}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}