Solve for I
\left\{\begin{matrix}I=\frac{M_{F}c}{\sigma }\text{, }&c\neq 0\text{ and }M_{F}\neq 0\text{ and }\sigma \neq 0\\I\neq 0\text{, }&\left(c=0\text{ or }M_{F}=0\right)\text{ and }\sigma =0\end{matrix}\right.
Solve for M_F
\left\{\begin{matrix}M_{F}=\frac{I\sigma }{c}\text{, }&c\neq 0\text{ and }I\neq 0\\M_{F}\in \mathrm{R}\text{, }&\sigma =0\text{ and }c=0\text{ and }I\neq 0\end{matrix}\right.
Share
Copied to clipboard
\sigma I=M_{F}c
Variable I cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by I.
\frac{\sigma I}{\sigma }=\frac{M_{F}c}{\sigma }
Divide both sides by \sigma .
I=\frac{M_{F}c}{\sigma }
Dividing by \sigma undoes the multiplication by \sigma .
I=\frac{M_{F}c}{\sigma }\text{, }I\neq 0
Variable I cannot be equal to 0.
\sigma I=M_{F}c
Multiply both sides of the equation by I.
M_{F}c=\sigma I
Swap sides so that all variable terms are on the left hand side.
cM_{F}=I\sigma
The equation is in standard form.
\frac{cM_{F}}{c}=\frac{I\sigma }{c}
Divide both sides by c.
M_{F}=\frac{I\sigma }{c}
Dividing by c undoes the multiplication by c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}