Solve for σ
\sigma =\frac{53760000000}{911}\approx 59012074.643249177
Assign σ
\sigma ≔\frac{53760000000}{911}
Share
Copied to clipboard
\sigma =\frac{8.4\times 10^{20}\times \left(1.6\times 10^{-19}\right)^{2}\times 4}{9.11\times 10^{-31}\times 1.6\times 10^{6}}
To multiply powers of the same base, add their exponents. Add 28 and -8 to get 20.
\sigma =\frac{8.4\times 10^{20}\times \left(1.6\times 10^{-19}\right)^{2}\times 4}{9.11\times 10^{-25}\times 1.6}
To multiply powers of the same base, add their exponents. Add -31 and 6 to get -25.
\sigma =\frac{4\times 8.4\times 10^{45}\times \left(1.6\times 10^{-19}\right)^{2}}{1.6\times 9.11}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\sigma =\frac{33.6\times 10^{45}\times \left(1.6\times 10^{-19}\right)^{2}}{1.6\times 9.11}
Multiply 4 and 8.4 to get 33.6.
\sigma =\frac{33.6\times 1000000000000000000000000000000000000000000000\times \left(1.6\times 10^{-19}\right)^{2}}{1.6\times 9.11}
Calculate 10 to the power of 45 and get 1000000000000000000000000000000000000000000000.
\sigma =\frac{33600000000000000000000000000000000000000000000\times \left(1.6\times 10^{-19}\right)^{2}}{1.6\times 9.11}
Multiply 33.6 and 1000000000000000000000000000000000000000000000 to get 33600000000000000000000000000000000000000000000.
\sigma =\frac{33600000000000000000000000000000000000000000000\times \left(1.6\times \frac{1}{10000000000000000000}\right)^{2}}{1.6\times 9.11}
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
\sigma =\frac{33600000000000000000000000000000000000000000000\times \left(\frac{1}{6250000000000000000}\right)^{2}}{1.6\times 9.11}
Multiply 1.6 and \frac{1}{10000000000000000000} to get \frac{1}{6250000000000000000}.
\sigma =\frac{33600000000000000000000000000000000000000000000\times \frac{1}{39062500000000000000000000000000000000}}{1.6\times 9.11}
Calculate \frac{1}{6250000000000000000} to the power of 2 and get \frac{1}{39062500000000000000000000000000000000}.
\sigma =\frac{860160000}{1.6\times 9.11}
Multiply 33600000000000000000000000000000000000000000000 and \frac{1}{39062500000000000000000000000000000000} to get 860160000.
\sigma =\frac{860160000}{14.576}
Multiply 1.6 and 9.11 to get 14.576.
\sigma =\frac{860160000000}{14576}
Expand \frac{860160000}{14.576} by multiplying both numerator and the denominator by 1000.
\sigma =\frac{53760000000}{911}
Reduce the fraction \frac{860160000000}{14576} to lowest terms by extracting and canceling out 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}