Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{\cos(t)}-\tan(t)\right)\left(\frac{1}{\cos(t)}+\tan(t)\right)
The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\frac{1-\sin(t)}{\cos(t)}
Consider \frac{1}{\cos(t)}-\tan(t). Factor out \frac{1}{\cos(t)}.
\frac{1+\sin(t)}{\cos(t)}
Consider \frac{1}{\cos(t)}+\tan(t). Factor out \frac{1}{\cos(t)}.
\left(1-\sin(t)\right)\left(1+\sin(t)\right)\times \left(\frac{1}{\cos(t)}\right)^{2}
Rewrite the complete factored expression.