\quad 2 \cdot \frac { 8 } { 4 p + 16 } = \frac { } { 4 p ^ { 2 } - 64 }
Solve for p
p = \frac{65}{16} = 4\frac{1}{16} = 4.0625
Share
Copied to clipboard
2\left(p-4\right)\times 8=1
Variable p cannot be equal to any of the values -4,4 since division by zero is not defined. Multiply both sides of the equation by 4\left(p-4\right)\left(p+4\right), the least common multiple of 4p+16,4p^{2}-64.
16\left(p-4\right)=1
Multiply 2 and 8 to get 16.
16p-64=1
Use the distributive property to multiply 16 by p-4.
16p=1+64
Add 64 to both sides.
16p=65
Add 1 and 64 to get 65.
p=\frac{65}{16}
Divide both sides by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}