Solve for x (complex solution)
x=10n_{2}+\left(-5i\right)\pi ^{-1}\ln(i\times 5^{\frac{1}{2}}\psi +i\left(5\psi ^{2}-1\right)^{\frac{1}{2}})\text{, }n_{2}\in \mathrm{Z}
x=10n_{1}+\left(-5i\right)\pi ^{-1}\ln(i\times 5^{\frac{1}{2}}\psi +\left(-i\right)\left(5\psi ^{2}-1\right)^{\frac{1}{2}})\text{, }n_{1}\in \mathrm{Z}
x=10n_{14}+\left(-5i\right)\pi ^{-1}\ln(\left(-i\right)\times 5^{\frac{1}{2}}\psi +i\left(5\psi ^{2}-1\right)^{\frac{1}{2}})\text{, }n_{14}\in \mathrm{Z}
x=10n_{13}+\left(-5i\right)\pi ^{-1}\ln(\left(-i\right)\times 5^{\frac{1}{2}}\psi +\left(-i\right)\left(5\psi ^{2}-1\right)^{\frac{1}{2}})\text{, }n_{13}\in \mathrm{Z}
Solve for ψ (complex solution)
\psi =-\frac{\sqrt{10\left(-\cos(\frac{2\pi x}{5})+1\right)}}{10}
\psi =\frac{\sqrt{10\left(-\cos(\frac{2\pi x}{5})+1\right)}}{10}
Solve for ψ
\psi =\frac{\sqrt{5}\sin(\frac{\pi x}{5})}{5}
\psi =-\frac{\sqrt{5}\sin(\frac{\pi x}{5})}{5}
Graph
Quiz
Trigonometry
5 problems similar to:
\psi ^ { 2 } = \frac { 2 } { 10 } \sin ^ { 2 } ( 2 \pi x / 10 )
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}