Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\pi x^{2}=8\times 12
Multiply \frac{1}{2} and 16 to get 8.
\pi x^{2}=96
Multiply 8 and 12 to get 96.
\frac{\pi x^{2}}{\pi }=\frac{96}{\pi }
Divide both sides by \pi .
x^{2}=\frac{96}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x=\frac{24}{\sqrt{6\pi }} x=-\frac{24}{\sqrt{6\pi }}
Take the square root of both sides of the equation.
\pi x^{2}=8\times 12
Multiply \frac{1}{2} and 16 to get 8.
\pi x^{2}=96
Multiply 8 and 12 to get 96.
\pi x^{2}-96=0
Subtract 96 from both sides.
x=\frac{0±\sqrt{0^{2}-4\pi \left(-96\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\pi \left(-96\right)}}{2\pi }
Square 0.
x=\frac{0±\sqrt{\left(-4\pi \right)\left(-96\right)}}{2\pi }
Multiply -4 times \pi .
x=\frac{0±\sqrt{384\pi }}{2\pi }
Multiply -4\pi times -96.
x=\frac{0±8\sqrt{6\pi }}{2\pi }
Take the square root of 384\pi .
x=\frac{24}{\sqrt{6\pi }}
Now solve the equation x=\frac{0±8\sqrt{6\pi }}{2\pi } when ± is plus.
x=-\frac{24}{\sqrt{6\pi }}
Now solve the equation x=\frac{0±8\sqrt{6\pi }}{2\pi } when ± is minus.
x=\frac{24}{\sqrt{6\pi }} x=-\frac{24}{\sqrt{6\pi }}
The equation is now solved.