Solve for x
x=4\sqrt{\frac{6}{\pi }}\approx 5.527906392
x=-4\sqrt{\frac{6}{\pi }}\approx -5.527906392
Graph
Share
Copied to clipboard
\pi x^{2}=8\times 12
Multiply \frac{1}{2} and 16 to get 8.
\pi x^{2}=96
Multiply 8 and 12 to get 96.
\frac{\pi x^{2}}{\pi }=\frac{96}{\pi }
Divide both sides by \pi .
x^{2}=\frac{96}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x=\frac{24}{\sqrt{6\pi }} x=-\frac{24}{\sqrt{6\pi }}
Take the square root of both sides of the equation.
\pi x^{2}=8\times 12
Multiply \frac{1}{2} and 16 to get 8.
\pi x^{2}=96
Multiply 8 and 12 to get 96.
\pi x^{2}-96=0
Subtract 96 from both sides.
x=\frac{0±\sqrt{0^{2}-4\pi \left(-96\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\pi \left(-96\right)}}{2\pi }
Square 0.
x=\frac{0±\sqrt{\left(-4\pi \right)\left(-96\right)}}{2\pi }
Multiply -4 times \pi .
x=\frac{0±\sqrt{384\pi }}{2\pi }
Multiply -4\pi times -96.
x=\frac{0±8\sqrt{6\pi }}{2\pi }
Take the square root of 384\pi .
x=\frac{24}{\sqrt{6\pi }}
Now solve the equation x=\frac{0±8\sqrt{6\pi }}{2\pi } when ± is plus.
x=-\frac{24}{\sqrt{6\pi }}
Now solve the equation x=\frac{0±8\sqrt{6\pi }}{2\pi } when ± is minus.
x=\frac{24}{\sqrt{6\pi }} x=-\frac{24}{\sqrt{6\pi }}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}