Solve for r
r=4\sqrt{\frac{3}{\pi }}\approx 3.908820095
r=-4\sqrt{\frac{3}{\pi }}\approx -3.908820095
Share
Copied to clipboard
\frac{\pi r^{2}}{\pi }=\frac{48}{\pi }
Divide both sides by \pi .
r^{2}=\frac{48}{\pi }
Dividing by \pi undoes the multiplication by \pi .
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
Take the square root of both sides of the equation.
\pi r^{2}-48=0
Subtract 48 from both sides.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-48\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\pi \left(-48\right)}}{2\pi }
Square 0.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-48\right)}}{2\pi }
Multiply -4 times \pi .
r=\frac{0±\sqrt{192\pi }}{2\pi }
Multiply -4\pi times -48.
r=\frac{0±8\sqrt{3\pi }}{2\pi }
Take the square root of 192\pi .
r=\frac{12}{\sqrt{3\pi }}
Now solve the equation r=\frac{0±8\sqrt{3\pi }}{2\pi } when ± is plus.
r=-\frac{12}{\sqrt{3\pi }}
Now solve the equation r=\frac{0±8\sqrt{3\pi }}{2\pi } when ± is minus.
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}