Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

\frac{\pi r^{2}}{\pi }=\frac{48}{\pi }
Divide both sides by \pi .
r^{2}=\frac{48}{\pi }
Dividing by \pi undoes the multiplication by \pi .
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
Take the square root of both sides of the equation.
\pi r^{2}-48=0
Subtract 48 from both sides.
r=\frac{0±\sqrt{0^{2}-4\pi \left(-48\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\pi \left(-48\right)}}{2\pi }
Square 0.
r=\frac{0±\sqrt{\left(-4\pi \right)\left(-48\right)}}{2\pi }
Multiply -4 times \pi .
r=\frac{0±\sqrt{192\pi }}{2\pi }
Multiply -4\pi times -48.
r=\frac{0±8\sqrt{3\pi }}{2\pi }
Take the square root of 192\pi .
r=\frac{12}{\sqrt{3\pi }}
Now solve the equation r=\frac{0±8\sqrt{3\pi }}{2\pi } when ± is plus.
r=-\frac{12}{\sqrt{3\pi }}
Now solve the equation r=\frac{0±8\sqrt{3\pi }}{2\pi } when ± is minus.
r=\frac{12}{\sqrt{3\pi }} r=-\frac{12}{\sqrt{3\pi }}
The equation is now solved.