Skip to main content
Solve for R
Tick mark Image

Similar Problems from Web Search

Share

\frac{\pi R^{2}}{\pi }=\frac{35.8}{\pi }
Divide both sides by \pi .
R^{2}=\frac{35.8}{\pi }
Dividing by \pi undoes the multiplication by \pi .
R^{2}=\frac{179}{5\pi }
Divide 35.8 by \pi .
R=\frac{179}{\sqrt{895\pi }} R=-\frac{179}{\sqrt{895\pi }}
Take the square root of both sides of the equation.
\pi R^{2}-35.8=0
Subtract 35.8 from both sides.
R=\frac{0±\sqrt{0^{2}-4\pi \left(-35.8\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -35.8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{0±\sqrt{-4\pi \left(-35.8\right)}}{2\pi }
Square 0.
R=\frac{0±\sqrt{\left(-4\pi \right)\left(-35.8\right)}}{2\pi }
Multiply -4 times \pi .
R=\frac{0±\sqrt{\frac{716\pi }{5}}}{2\pi }
Multiply -4\pi times -35.8.
R=\frac{0±\frac{2\sqrt{895\pi }}{5}}{2\pi }
Take the square root of \frac{716\pi }{5}.
R=\frac{179}{\sqrt{895\pi }}
Now solve the equation R=\frac{0±\frac{2\sqrt{895\pi }}{5}}{2\pi } when ± is plus.
R=-\frac{179}{\sqrt{895\pi }}
Now solve the equation R=\frac{0±\frac{2\sqrt{895\pi }}{5}}{2\pi } when ± is minus.
R=\frac{179}{\sqrt{895\pi }} R=-\frac{179}{\sqrt{895\pi }}
The equation is now solved.