\pi ( 3 x ) ^ { 2 } = d x
Solve for d (complex solution)
\left\{\begin{matrix}\\d=9\pi x\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=9\pi x\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
x=\frac{d}{9\pi }
x=0
Graph
Share
Copied to clipboard
\pi \times 3^{2}x^{2}=dx
Expand \left(3x\right)^{2}.
\pi \times 9x^{2}=dx
Calculate 3 to the power of 2 and get 9.
dx=\pi \times 9x^{2}
Swap sides so that all variable terms are on the left hand side.
xd=9\pi x^{2}
The equation is in standard form.
\frac{xd}{x}=\frac{9\pi x^{2}}{x}
Divide both sides by x.
d=\frac{9\pi x^{2}}{x}
Dividing by x undoes the multiplication by x.
d=9\pi x
Divide 9\pi x^{2} by x.
\pi \times 3^{2}x^{2}=dx
Expand \left(3x\right)^{2}.
\pi \times 9x^{2}=dx
Calculate 3 to the power of 2 and get 9.
dx=\pi \times 9x^{2}
Swap sides so that all variable terms are on the left hand side.
xd=9\pi x^{2}
The equation is in standard form.
\frac{xd}{x}=\frac{9\pi x^{2}}{x}
Divide both sides by x.
d=\frac{9\pi x^{2}}{x}
Dividing by x undoes the multiplication by x.
d=9\pi x
Divide 9\pi x^{2} by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}