Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\pi \times \frac{2}{3}x+\pi \times \frac{6}{5}\right)\left(\frac{2}{3}x-\frac{6}{5}\right)
Use the distributive property to multiply \pi by \frac{2}{3}x+\frac{6}{5}.
\pi \times \frac{2}{3}x\times \frac{2}{3}x+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Apply the distributive property by multiplying each term of \pi \times \frac{2}{3}x+\pi \times \frac{6}{5} by each term of \frac{2}{3}x-\frac{6}{5}.
\pi \times \frac{2}{3}x^{2}\times \frac{2}{3}+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply x and x to get x^{2}.
\pi \times \frac{2\times 2}{3\times 3}x^{2}+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply \frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Do the multiplications in the fraction \frac{2\times 2}{3\times 3}.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{2\left(-6\right)}{3\times 5}x+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply \frac{2}{3} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{-12}{15}x+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Do the multiplications in the fraction \frac{2\left(-6\right)}{3\times 5}.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Reduce the fraction \frac{-12}{15} to lowest terms by extracting and canceling out 3.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{6\times 2}{5\times 3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply \frac{6}{5} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{12}{15}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Do the multiplications in the fraction \frac{6\times 2}{5\times 3}.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{4}{5}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Combine \pi \left(-\frac{4}{5}\right)x and \pi \times \frac{4}{5}x to get 0.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{6\left(-6\right)}{5\times 5}
Multiply \frac{6}{5} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{-36}{25}
Do the multiplications in the fraction \frac{6\left(-6\right)}{5\times 5}.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{36}{25}\right)
Fraction \frac{-36}{25} can be rewritten as -\frac{36}{25} by extracting the negative sign.
\left(\pi \times \frac{2}{3}x+\pi \times \frac{6}{5}\right)\left(\frac{2}{3}x-\frac{6}{5}\right)
Use the distributive property to multiply \pi by \frac{2}{3}x+\frac{6}{5}.
\pi \times \frac{2}{3}x\times \frac{2}{3}x+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Apply the distributive property by multiplying each term of \pi \times \frac{2}{3}x+\pi \times \frac{6}{5} by each term of \frac{2}{3}x-\frac{6}{5}.
\pi \times \frac{2}{3}x^{2}\times \frac{2}{3}+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply x and x to get x^{2}.
\pi \times \frac{2\times 2}{3\times 3}x^{2}+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply \frac{2}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{2}{3}x\left(-\frac{6}{5}\right)+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Do the multiplications in the fraction \frac{2\times 2}{3\times 3}.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{2\left(-6\right)}{3\times 5}x+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply \frac{2}{3} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{-12}{15}x+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Do the multiplications in the fraction \frac{2\left(-6\right)}{3\times 5}.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{6}{5}\times \frac{2}{3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Reduce the fraction \frac{-12}{15} to lowest terms by extracting and canceling out 3.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{6\times 2}{5\times 3}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Multiply \frac{6}{5} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{12}{15}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Do the multiplications in the fraction \frac{6\times 2}{5\times 3}.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{4}{5}\right)x+\pi \times \frac{4}{5}x+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{6}{5}\left(-\frac{6}{5}\right)
Combine \pi \left(-\frac{4}{5}\right)x and \pi \times \frac{4}{5}x to get 0.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{6\left(-6\right)}{5\times 5}
Multiply \frac{6}{5} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\pi \times \frac{4}{9}x^{2}+\pi \times \frac{-36}{25}
Do the multiplications in the fraction \frac{6\left(-6\right)}{5\times 5}.
\pi \times \frac{4}{9}x^{2}+\pi \left(-\frac{36}{25}\right)
Fraction \frac{-36}{25} can be rewritten as -\frac{36}{25} by extracting the negative sign.