Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\pi \times 1-xx=5x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\pi \times 1-x^{2}=5x
Multiply x and x to get x^{2}.
\pi \times 1-x^{2}-5x=0
Subtract 5x from both sides.
-x^{2}-5x+\pi =0
Reorder the terms.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\pi }}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -5 for b, and \pi for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\pi }}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\pi }}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{4\pi +25}}{2\left(-1\right)}
Add 25 to 4\pi .
x=\frac{5±\sqrt{4\pi +25}}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{4\pi +25}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{4\pi +25}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{4\pi +25}}{-2} when ± is plus. Add 5 to \sqrt{25+4\pi }.
x=\frac{-\sqrt{4\pi +25}-5}{2}
Divide 5+\sqrt{25+4\pi } by -2.
x=\frac{-\sqrt{4\pi +25}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{4\pi +25}}{-2} when ± is minus. Subtract \sqrt{25+4\pi } from 5.
x=\frac{\sqrt{4\pi +25}-5}{2}
Divide 5-\sqrt{25+4\pi } by -2.
x=\frac{-\sqrt{4\pi +25}-5}{2} x=\frac{\sqrt{4\pi +25}-5}{2}
The equation is now solved.
x=\frac{\sqrt{4\pi +25}-5}{2}\text{, }x\neq 0 x=\frac{-\sqrt{4\pi +25}-5}{2}\text{, }x\neq 0
Variable x cannot be equal to 0.