Solve for x
x=\frac{-\sqrt{4\pi +25}-5}{2}\approx -5.56457055
x=\frac{\sqrt{4\pi +25}-5}{2}\approx 0.56457055
Graph
Share
Copied to clipboard
\pi \times 1-xx=5x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\pi \times 1-x^{2}=5x
Multiply x and x to get x^{2}.
\pi \times 1-x^{2}-5x=0
Subtract 5x from both sides.
-x^{2}-5x+\pi =0
Reorder the terms.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-1\right)\pi }}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -5 for b, and \pi for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-1\right)\pi }}{2\left(-1\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+4\pi }}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-5\right)±\sqrt{4\pi +25}}{2\left(-1\right)}
Add 25 to 4\pi .
x=\frac{5±\sqrt{4\pi +25}}{2\left(-1\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{4\pi +25}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{4\pi +25}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{4\pi +25}}{-2} when ± is plus. Add 5 to \sqrt{25+4\pi }.
x=\frac{-\sqrt{4\pi +25}-5}{2}
Divide 5+\sqrt{25+4\pi } by -2.
x=\frac{-\sqrt{4\pi +25}+5}{-2}
Now solve the equation x=\frac{5±\sqrt{4\pi +25}}{-2} when ± is minus. Subtract \sqrt{25+4\pi } from 5.
x=\frac{\sqrt{4\pi +25}-5}{2}
Divide 5-\sqrt{25+4\pi } by -2.
x=\frac{-\sqrt{4\pi +25}-5}{2} x=\frac{\sqrt{4\pi +25}-5}{2}
The equation is now solved.
x=\frac{\sqrt{4\pi +25}-5}{2}\text{, }x\neq 0 x=\frac{-\sqrt{4\pi +25}-5}{2}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}