Solve for x (complex solution)
x=\frac{-2i}{\pi }\approx -0.636619772i
x=\frac{2i}{\pi }\approx 0.636619772i
Graph
Share
Copied to clipboard
\pi \pi x^{2}+4=0
Multiply both sides of the equation by 4.
\pi ^{2}x^{2}+4=0
Multiply \pi and \pi to get \pi ^{2}.
\pi ^{2}x^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{4}{\pi ^{2}}
Dividing by \pi ^{2} undoes the multiplication by \pi ^{2}.
x=\frac{2i}{\pi } x=-\frac{2i}{\pi }
Take the square root of both sides of the equation.
x=\frac{2i}{\pi } x=\frac{-2i}{\pi }
The equation is now solved.
\pi \pi x^{2}+4=0
Multiply both sides of the equation by 4.
\pi ^{2}x^{2}+4=0
Multiply \pi and \pi to get \pi ^{2}.
x=\frac{0±\sqrt{0^{2}-4\pi ^{2}\times 4}}{2\pi ^{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi ^{2} for a, 0 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\pi ^{2}\times 4}}{2\pi ^{2}}
Square 0.
x=\frac{0±\sqrt{\left(-4\pi ^{2}\right)\times 4}}{2\pi ^{2}}
Multiply -4 times \pi ^{2}.
x=\frac{0±\sqrt{-16\pi ^{2}}}{2\pi ^{2}}
Multiply -4\pi ^{2} times 4.
x=\frac{0±4\pi i}{2\pi ^{2}}
Take the square root of -16\pi ^{2}.
x=\frac{2i}{\pi }
Now solve the equation x=\frac{0±4\pi i}{2\pi ^{2}} when ± is plus.
x=\frac{-2i}{\pi }
Now solve the equation x=\frac{0±4\pi i}{2\pi ^{2}} when ± is minus.
x=\frac{2i}{\pi } x=\frac{-2i}{\pi }
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}