Solve for x
x=-\frac{3}{\pi }\approx -0.954929659
x=0
Graph
Share
Copied to clipboard
\pi x^{2}+3x+0=0
Multiply 0 and 1415926 to get 0.
\pi x^{2}+3x=0
Anything plus zero gives itself.
x\left(\pi x+3\right)=0
Factor out x.
x=0 x=-\frac{3}{\pi }
To find equation solutions, solve x=0 and \pi x+3=0.
\pi x^{2}+3x+0=0
Multiply 0 and 1415926 to get 0.
\pi x^{2}+3x=0
Anything plus zero gives itself.
x=\frac{-3±\sqrt{3^{2}}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 3 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2\pi }
Take the square root of 3^{2}.
x=\frac{0}{2\pi }
Now solve the equation x=\frac{-3±3}{2\pi } when ± is plus. Add -3 to 3.
x=0
Divide 0 by 2\pi .
x=-\frac{6}{2\pi }
Now solve the equation x=\frac{-3±3}{2\pi } when ± is minus. Subtract 3 from -3.
x=-\frac{3}{\pi }
Divide -6 by 2\pi .
x=0 x=-\frac{3}{\pi }
The equation is now solved.
\pi x^{2}+3x+0=0
Multiply 0 and 1415926 to get 0.
\pi x^{2}+3x=0
Anything plus zero gives itself.
\frac{\pi x^{2}+3x}{\pi }=\frac{0}{\pi }
Divide both sides by \pi .
x^{2}+\frac{3}{\pi }x=\frac{0}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x^{2}+\frac{3}{\pi }x=0
Divide 0 by \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=\left(\frac{3}{2\pi }\right)^{2}
Divide \frac{3}{\pi }, the coefficient of the x term, by 2 to get \frac{3}{2\pi }. Then add the square of \frac{3}{2\pi } to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{9}{4\pi ^{2}}
Square \frac{3}{2\pi }.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{9}{4\pi ^{2}}
Factor x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{9}{4\pi ^{2}}}
Take the square root of both sides of the equation.
x+\frac{3}{2\pi }=\frac{3}{2\pi } x+\frac{3}{2\pi }=-\frac{3}{2\pi }
Simplify.
x=0 x=-\frac{3}{\pi }
Subtract \frac{3}{2\pi } from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}