Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\pi x^{2}+3x+0.1415926=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 3 for b, and 0.1415926 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Square 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Multiply -4 times \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Multiply -4\pi times 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Add 9 to -\frac{707963\pi }{1250000}.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Take the square root of 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Now solve the equation x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } when ± is plus. Add -3 to \frac{\sqrt{56250000-3539815\pi }}{2500}.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Divide -3+\frac{\sqrt{56250000-3539815\pi }}{2500} by 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Now solve the equation x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } when ± is minus. Subtract \frac{\sqrt{56250000-3539815\pi }}{2500} from -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Divide -3-\frac{\sqrt{56250000-3539815\pi }}{2500} by 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
The equation is now solved.
\pi x^{2}+3x+0.1415926=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Subtract 0.1415926 from both sides of the equation.
\pi x^{2}+3x=-0.1415926
Subtracting 0.1415926 from itself leaves 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Divide both sides by \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Divide -0.1415926 by \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Divide \frac{3}{\pi }, the coefficient of the x term, by 2 to get \frac{3}{2\pi }. Then add the square of \frac{3}{2\pi } to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Square \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Add -\frac{707963}{5000000\pi } to \frac{9}{4\pi ^{2}}.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Factor x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Take the square root of both sides of the equation.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Simplify.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Subtract \frac{3}{2\pi } from both sides of the equation.
\pi x^{2}+3x+0.1415926=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3±\sqrt{3^{2}-4\pi \times 0.1415926}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 3 for b, and 0.1415926 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\pi \times 0.1415926}}{2\pi }
Square 3.
x=\frac{-3±\sqrt{9+\left(-4\pi \right)\times 0.1415926}}{2\pi }
Multiply -4 times \pi .
x=\frac{-3±\sqrt{9-\frac{707963\pi }{1250000}}}{2\pi }
Multiply -4\pi times 0.1415926.
x=\frac{-3±\sqrt{-\frac{707963\pi }{1250000}+9}}{2\pi }
Add 9 to -\frac{707963\pi }{1250000}.
x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi }
Take the square root of 9-\frac{707963\pi }{1250000}.
x=\frac{\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Now solve the equation x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } when ± is plus. Add -3 to \frac{\sqrt{56250000-3539815\pi }}{2500}.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi }
Divide -3+\frac{\sqrt{56250000-3539815\pi }}{2500} by 2\pi .
x=\frac{-\frac{\sqrt{56250000-3539815\pi }}{2500}-3}{2\pi }
Now solve the equation x=\frac{-3±\frac{\sqrt{56250000-3539815\pi }}{2500}}{2\pi } when ± is minus. Subtract \frac{\sqrt{56250000-3539815\pi }}{2500} from -3.
x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Divide -3-\frac{\sqrt{56250000-3539815\pi }}{2500} by 2\pi .
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
The equation is now solved.
\pi x^{2}+3x+0.1415926=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\pi x^{2}+3x+0.1415926-0.1415926=-0.1415926
Subtract 0.1415926 from both sides of the equation.
\pi x^{2}+3x=-0.1415926
Subtracting 0.1415926 from itself leaves 0.
\frac{\pi x^{2}+3x}{\pi }=-\frac{0.1415926}{\pi }
Divide both sides by \pi .
x^{2}+\frac{3}{\pi }x=-\frac{0.1415926}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x^{2}+\frac{3}{\pi }x=-\frac{707963}{5000000\pi }
Divide -0.1415926 by \pi .
x^{2}+\frac{3}{\pi }x+\left(\frac{3}{2\pi }\right)^{2}=-\frac{707963}{5000000\pi }+\left(\frac{3}{2\pi }\right)^{2}
Divide \frac{3}{\pi }, the coefficient of the x term, by 2 to get \frac{3}{2\pi }. Then add the square of \frac{3}{2\pi } to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=-\frac{707963}{5000000\pi }+\frac{9}{4\pi ^{2}}
Square \frac{3}{2\pi }.
x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Add -\frac{707963}{5000000\pi } to \frac{9}{4\pi ^{2}}.
\left(x+\frac{3}{2\pi }\right)^{2}=\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}
Factor x^{2}+\frac{3}{\pi }x+\frac{9}{4\pi ^{2}}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2\pi }\right)^{2}}=\sqrt{\frac{-\frac{707963\pi }{5000000}+\frac{9}{4}}{\pi ^{2}}}
Take the square root of both sides of the equation.
x+\frac{3}{2\pi }=\frac{\sqrt{56250000-3539815\pi }}{5000\pi } x+\frac{3}{2\pi }=-\frac{\sqrt{56250000-3539815\pi }}{5000\pi }
Simplify.
x=\frac{\sqrt{56250000-3539815\pi }-7500}{5000\pi } x=-\frac{\sqrt{56250000-3539815\pi }+7500}{5000\pi }
Subtract \frac{3}{2\pi } from both sides of the equation.