Solve for x
x=\sqrt{\frac{154}{\pi }}\approx 7.001408606
x=-\sqrt{\frac{154}{\pi }}\approx -7.001408606
Graph
Share
Copied to clipboard
\pi x^{2}=22\times 7
Multiply \frac{22}{7} and 7 to get 22.
\pi x^{2}=154
Multiply 22 and 7 to get 154.
\frac{\pi x^{2}}{\pi }=\frac{154}{\pi }
Divide both sides by \pi .
x^{2}=\frac{154}{\pi }
Dividing by \pi undoes the multiplication by \pi .
x=\frac{154}{\sqrt{154\pi }} x=-\frac{154}{\sqrt{154\pi }}
Take the square root of both sides of the equation.
\pi x^{2}=22\times 7
Multiply \frac{22}{7} and 7 to get 22.
\pi x^{2}=154
Multiply 22 and 7 to get 154.
\pi x^{2}-154=0
Subtract 154 from both sides.
x=\frac{0±\sqrt{0^{2}-4\pi \left(-154\right)}}{2\pi }
This equation is in standard form: ax^{2}+bx+c=0. Substitute \pi for a, 0 for b, and -154 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\pi \left(-154\right)}}{2\pi }
Square 0.
x=\frac{0±\sqrt{\left(-4\pi \right)\left(-154\right)}}{2\pi }
Multiply -4 times \pi .
x=\frac{0±\sqrt{616\pi }}{2\pi }
Multiply -4\pi times -154.
x=\frac{0±2\sqrt{154\pi }}{2\pi }
Take the square root of 616\pi .
x=\frac{154}{\sqrt{154\pi }}
Now solve the equation x=\frac{0±2\sqrt{154\pi }}{2\pi } when ± is plus.
x=-\frac{154}{\sqrt{154\pi }}
Now solve the equation x=\frac{0±2\sqrt{154\pi }}{2\pi } when ± is minus.
x=\frac{154}{\sqrt{154\pi }} x=-\frac{154}{\sqrt{154\pi }}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}