\operatorname { ve } \frac { d ^ { 2 } y } { d x ^ { 2 } } - y = e ^ { 3 x } \cos 2 x - e ^ { 2 x } \sin 3
Solve for v (complex solution)
v\in \mathrm{C}
y=-\frac{e^{2x}\left(e^{\left(1-2i\right)x}+e^{\left(1+2i\right)x}-2\cos(\frac{\pi }{2}-3)\right)}{2}
Solve for v
v\in \mathrm{R}
e^{2x}\left(\cos(2x)e^{x}-\sin(3)\right)+y=0
Share
Copied to clipboard
ve\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}=e^{3x}\cos(2x)-e^{2x}\sin(3)+y
Add y to both sides.
0=\cos(2x)e^{3x}-\sin(3)e^{2x}+y
The equation is in standard form.
v\in
This is false for any v.
ve\frac{\mathrm{d}(y)}{\mathrm{d}x^{2}}=e^{3x}\cos(2x)-e^{2x}\sin(3)+y
Add y to both sides.
0=\cos(2x)e^{3x}-\sin(3)e^{2x}+y
The equation is in standard form.
v\in
This is false for any v.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}