Solve for E (complex solution)
\left\{\begin{matrix}E=\frac{anvx}{\left(x-\mu \right)^{2}}\text{, }&x\neq \mu \\E\in \mathrm{C}\text{, }&\left(v=0\text{ and }x=\mu \right)\text{ or }\left(a=0\text{ and }x=\mu \right)\text{ or }\left(n=0\text{ and }x=\mu \right)\text{ or }\left(x=0\text{ and }\mu =0\right)\end{matrix}\right.
Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{E\left(x-\mu \right)^{2}}{nvx}\text{, }&x\neq 0\text{ and }n\neq 0\text{ and }v\neq 0\\a\in \mathrm{C}\text{, }&\left(E=0\text{ and }n=0\right)\text{ or }\left(E=0\text{ and }x=0\right)\text{ or }\left(n=0\text{ and }x=\mu \right)\text{ or }\left(x=0\text{ and }\mu =0\right)\text{ or }\left(x=\mu \text{ and }v=0\text{ and }\mu \neq 0\text{ and }n\neq 0\right)\text{ or }\left(E=0\text{ and }v=0\text{ and }x\neq 0\text{ and }n\neq 0\right)\end{matrix}\right.
Solve for E
\left\{\begin{matrix}E=\frac{anvx}{\left(x-\mu \right)^{2}}\text{, }&x\neq \mu \\E\in \mathrm{R}\text{, }&\left(v=0\text{ and }x=\mu \right)\text{ or }\left(a=0\text{ and }x=\mu \right)\text{ or }\left(n=0\text{ and }x=\mu \right)\text{ or }\left(x=0\text{ and }\mu =0\right)\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{E\left(x-\mu \right)^{2}}{nvx}\text{, }&x\neq 0\text{ and }n\neq 0\text{ and }v\neq 0\\a\in \mathrm{R}\text{, }&\left(E=0\text{ and }n=0\right)\text{ or }\left(E=0\text{ and }x=0\right)\text{ or }\left(n=0\text{ and }x=\mu \right)\text{ or }\left(x=0\text{ and }\mu =0\right)\text{ or }\left(x=\mu \text{ and }v=0\text{ and }\mu \neq 0\text{ and }n\neq 0\right)\text{ or }\left(E=0\text{ and }v=0\text{ and }x\neq 0\text{ and }n\neq 0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
Ex^{2}-2Ex\mu +E\mu ^{2}=vanx
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=vanx
Combine all terms containing E.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=anvx
The equation is in standard form.
\frac{\left(x^{2}-2x\mu +\mu ^{2}\right)E}{x^{2}-2x\mu +\mu ^{2}}=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Divide both sides by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Dividing by x^{2}-2x\mu +\mu ^{2} undoes the multiplication by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{\left(x-\mu \right)^{2}}
Divide vanx by x^{2}-2x\mu +\mu ^{2}.
vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
nvxa=Ex^{2}-2Ex\mu +E\mu ^{2}
The equation is in standard form.
\frac{nvxa}{nvx}=\frac{E\left(x-\mu \right)^{2}}{nvx}
Divide both sides by vnx.
a=\frac{E\left(x-\mu \right)^{2}}{nvx}
Dividing by vnx undoes the multiplication by vnx.
vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
Ex^{2}-2Ex\mu +E\mu ^{2}=vanx
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=vanx
Combine all terms containing E.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=anvx
The equation is in standard form.
\frac{\left(x^{2}-2x\mu +\mu ^{2}\right)E}{x^{2}-2x\mu +\mu ^{2}}=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Divide both sides by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Dividing by x^{2}-2x\mu +\mu ^{2} undoes the multiplication by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{\left(x-\mu \right)^{2}}
Divide vanx by x^{2}-2x\mu +\mu ^{2}.
vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
nvxa=Ex^{2}-2Ex\mu +E\mu ^{2}
The equation is in standard form.
\frac{nvxa}{nvx}=\frac{E\left(x-\mu \right)^{2}}{nvx}
Divide both sides by vnx.
a=\frac{E\left(x-\mu \right)^{2}}{nvx}
Dividing by vnx undoes the multiplication by vnx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}