Skip to main content
Solve for E (complex solution)
Tick mark Image
Solve for a (complex solution)
Tick mark Image
Solve for E
Tick mark Image
Solve for a
Tick mark Image
Graph

Similar Problems from Web Search

Share

vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
Ex^{2}-2Ex\mu +E\mu ^{2}=vanx
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=vanx
Combine all terms containing E.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=anvx
The equation is in standard form.
\frac{\left(x^{2}-2x\mu +\mu ^{2}\right)E}{x^{2}-2x\mu +\mu ^{2}}=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Divide both sides by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Dividing by x^{2}-2x\mu +\mu ^{2} undoes the multiplication by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{\left(x-\mu \right)^{2}}
Divide vanx by x^{2}-2x\mu +\mu ^{2}.
vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
nvxa=Ex^{2}-2Ex\mu +E\mu ^{2}
The equation is in standard form.
\frac{nvxa}{nvx}=\frac{E\left(x-\mu \right)^{2}}{nvx}
Divide both sides by vnx.
a=\frac{E\left(x-\mu \right)^{2}}{nvx}
Dividing by vnx undoes the multiplication by vnx.
vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
Ex^{2}-2Ex\mu +E\mu ^{2}=vanx
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=vanx
Combine all terms containing E.
\left(x^{2}-2x\mu +\mu ^{2}\right)E=anvx
The equation is in standard form.
\frac{\left(x^{2}-2x\mu +\mu ^{2}\right)E}{x^{2}-2x\mu +\mu ^{2}}=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Divide both sides by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{x^{2}-2x\mu +\mu ^{2}}
Dividing by x^{2}-2x\mu +\mu ^{2} undoes the multiplication by x^{2}-2x\mu +\mu ^{2}.
E=\frac{anvx}{\left(x-\mu \right)^{2}}
Divide vanx by x^{2}-2x\mu +\mu ^{2}.
vanx=E\left(x^{2}-2x\mu +\mu ^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\mu \right)^{2}.
vanx=Ex^{2}-2Ex\mu +E\mu ^{2}
Use the distributive property to multiply E by x^{2}-2x\mu +\mu ^{2}.
nvxa=Ex^{2}-2Ex\mu +E\mu ^{2}
The equation is in standard form.
\frac{nvxa}{nvx}=\frac{E\left(x-\mu \right)^{2}}{nvx}
Divide both sides by vnx.
a=\frac{E\left(x-\mu \right)^{2}}{nvx}
Dividing by vnx undoes the multiplication by vnx.