Solve for n
\left\{\begin{matrix}n=\frac{n_{45}}{2x}\text{, }&x\neq 0\\n\in \mathrm{R}\text{, }&\left(n_{45}=0\text{ and }x=0\right)\text{ or }t=0\end{matrix}\right.
Solve for n_45
\left\{\begin{matrix}\\n_{45}=2nx\text{, }&\text{unconditionally}\\n_{45}\in \mathrm{R}\text{, }&t=0\end{matrix}\right.
Graph
Share
Copied to clipboard
tnx-2tn+tn\left(x+2\right)=tn_{45}
Use the distributive property to multiply tn by x-2.
tnx-2tn+tnx+2tn=tn_{45}
Use the distributive property to multiply tn by x+2.
2tnx-2tn+2tn=tn_{45}
Combine tnx and tnx to get 2tnx.
2tnx=tn_{45}
Combine -2tn and 2tn to get 0.
2txn=n_{45}t
The equation is in standard form.
\frac{2txn}{2tx}=\frac{n_{45}t}{2tx}
Divide both sides by 2tx.
n=\frac{n_{45}t}{2tx}
Dividing by 2tx undoes the multiplication by 2tx.
n=\frac{n_{45}}{2x}
Divide tn_{45} by 2tx.
tnx-2tn+tn\left(x+2\right)=tn_{45}
Use the distributive property to multiply tn by x-2.
tnx-2tn+tnx+2tn=tn_{45}
Use the distributive property to multiply tn by x+2.
2tnx-2tn+2tn=tn_{45}
Combine tnx and tnx to get 2tnx.
2tnx=tn_{45}
Combine -2tn and 2tn to get 0.
tn_{45}=2tnx
Swap sides so that all variable terms are on the left hand side.
tn_{45}=2ntx
The equation is in standard form.
\frac{tn_{45}}{t}=\frac{2ntx}{t}
Divide both sides by t.
n_{45}=\frac{2ntx}{t}
Dividing by t undoes the multiplication by t.
n_{45}=2nx
Divide 2tnx by t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}