Skip to main content
Solve for a
Tick mark Image
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}
Rationalize the denominator of \frac{\sqrt{2}-1}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{2-1}
Square \sqrt{2}. Square 1.
taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{1}
Subtract 1 from 2 to get 1.
taix=\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)
Anything divided by one gives itself.
taix=\left(\sqrt{2}-1\right)^{2}
Multiply \sqrt{2}-1 and \sqrt{2}-1 to get \left(\sqrt{2}-1\right)^{2}.
taix=\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
taix=2-2\sqrt{2}+1
The square of \sqrt{2} is 2.
taix=3-2\sqrt{2}
Add 2 and 1 to get 3.
itxa=3-2\sqrt{2}
The equation is in standard form.
\frac{itxa}{itx}=\frac{3-2\sqrt{2}}{itx}
Divide both sides by itx.
a=\frac{3-2\sqrt{2}}{itx}
Dividing by itx undoes the multiplication by itx.
a=-\frac{\left(3-2\sqrt{2}\right)i}{tx}
Divide 3-2\sqrt{2} by itx.
taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}
Rationalize the denominator of \frac{\sqrt{2}-1}{\sqrt{2}+1} by multiplying numerator and denominator by \sqrt{2}-1.
taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{2-1}
Square \sqrt{2}. Square 1.
taix=\frac{\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)}{1}
Subtract 1 from 2 to get 1.
taix=\left(\sqrt{2}-1\right)\left(\sqrt{2}-1\right)
Anything divided by one gives itself.
taix=\left(\sqrt{2}-1\right)^{2}
Multiply \sqrt{2}-1 and \sqrt{2}-1 to get \left(\sqrt{2}-1\right)^{2}.
taix=\left(\sqrt{2}\right)^{2}-2\sqrt{2}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{2}-1\right)^{2}.
taix=2-2\sqrt{2}+1
The square of \sqrt{2} is 2.
taix=3-2\sqrt{2}
Add 2 and 1 to get 3.
iaxt=3-2\sqrt{2}
The equation is in standard form.
\frac{iaxt}{iax}=\frac{3-2\sqrt{2}}{iax}
Divide both sides by iax.
t=\frac{3-2\sqrt{2}}{iax}
Dividing by iax undoes the multiplication by iax.
t=-\frac{\left(3-2\sqrt{2}\right)i}{ax}
Divide 3-2\sqrt{2} by iax.