Factor
\frac{3o\left(40p+cp_{80}\right)}{10}
Evaluate
\frac{3o\left(40p+cp_{80}\right)}{10}
Share
Copied to clipboard
factor(op\left(-8\right)+op\times 4\left(-3+8\right)+|-6|\times \frac{cop_{80}}{|-20|})
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -8 is 8.
factor(op\left(-8\right)+op\times 4\times 5+|-6|\times \frac{cop_{80}}{|-20|})
Add -3 and 8 to get 5.
factor(op\left(-8\right)+op\times 20+|-6|\times \frac{cop_{80}}{|-20|})
Multiply 4 and 5 to get 20.
factor(12op+|-6|\times \frac{cop_{80}}{|-20|})
Combine op\left(-8\right) and op\times 20 to get 12op.
factor(12op+6\times \frac{cop_{80}}{|-20|})
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -6 is 6.
factor(12op+6\times \frac{cop_{80}}{20})
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -20 is 20.
factor(12op+\frac{6cop_{80}}{20})
Express 6\times \frac{cop_{80}}{20} as a single fraction.
factor(\frac{20\times 12op}{20}+\frac{6cop_{80}}{20})
To add or subtract expressions, expand them to make their denominators the same. Multiply 12op times \frac{20}{20}.
factor(\frac{20\times 12op+6cop_{80}}{20})
Since \frac{20\times 12op}{20} and \frac{6cop_{80}}{20} have the same denominator, add them by adding their numerators.
factor(\frac{240op+6cop_{80}}{20})
Do the multiplications in 20\times 12op+6cop_{80}.
6\left(40op+cop_{80}\right)
Consider 240op+6cop_{80}. Factor out 6.
o\left(40p+cp_{80}\right)
Consider 40op+cop_{80}. Factor out o.
\frac{3o\left(40p+cp_{80}\right)}{10}
Rewrite the complete factored expression. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}