Solve for g_5
g_{5}=\frac{2}{o\left(3z-8\right)}
z\neq \frac{8}{3}\text{ and }o\neq 0
Solve for o
o=\frac{2}{g_{5}\left(3z-8\right)}
z\neq \frac{8}{3}\text{ and }g_{5}\neq 0
Share
Copied to clipboard
3og_{5}z-8og_{5}=2
Use the distributive property to multiply og_{5} by 3z-8.
\left(3oz-8o\right)g_{5}=2
Combine all terms containing g_{5}.
\frac{\left(3oz-8o\right)g_{5}}{3oz-8o}=\frac{2}{3oz-8o}
Divide both sides by 3oz-8o.
g_{5}=\frac{2}{3oz-8o}
Dividing by 3oz-8o undoes the multiplication by 3oz-8o.
g_{5}=\frac{2}{o\left(3z-8\right)}
Divide 2 by 3oz-8o.
3og_{5}z-8og_{5}=2
Use the distributive property to multiply og_{5} by 3z-8.
\left(3g_{5}z-8g_{5}\right)o=2
Combine all terms containing o.
\frac{\left(3g_{5}z-8g_{5}\right)o}{3g_{5}z-8g_{5}}=\frac{2}{3g_{5}z-8g_{5}}
Divide both sides by 3g_{5}z-8g_{5}.
o=\frac{2}{3g_{5}z-8g_{5}}
Dividing by 3g_{5}z-8g_{5} undoes the multiplication by 3g_{5}z-8g_{5}.
o=\frac{2}{g_{5}\left(3z-8\right)}
Divide 2 by 3g_{5}z-8g_{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}