Solve for n
n=\frac{8i}{e\left(z+\left(-1-i\right)\right)^{3}}
z\neq 1+i
Solve for z
z=2e^{\frac{\pi i}{6}-\frac{1}{3}}n^{-\frac{1}{3}}+\left(1+i\right)
z=2ie^{\frac{-1+\pi i}{3}}n^{-\frac{1}{3}}+\left(1+i\right)
z=1+i-2e^{\frac{\pi i}{2}-\frac{1}{3}}n^{-\frac{1}{3}}\text{, }n\neq 0
Share
Copied to clipboard
e\left(z+\left(-1-i\right)\right)^{3}n=8i
The equation is in standard form.
\frac{e\left(z+\left(-1-i\right)\right)^{3}n}{e\left(z+\left(-1-i\right)\right)^{3}}=\frac{8i}{e\left(z+\left(-1-i\right)\right)^{3}}
Divide both sides by e\left(z+\left(-1-i\right)\right)^{3}.
n=\frac{8i}{e\left(z+\left(-1-i\right)\right)^{3}}
Dividing by e\left(z+\left(-1-i\right)\right)^{3} undoes the multiplication by e\left(z+\left(-1-i\right)\right)^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}