Skip to main content
Solve for l (complex solution)
Tick mark Image
Solve for m (complex solution)
Tick mark Image
Solve for l
Tick mark Image
Solve for m
Tick mark Image
Graph

Similar Problems from Web Search

Share

2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Multiply both sides of the equation by 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Use the distributive property to multiply 2lom by x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Express 2\left(-\frac{\pi }{2}\right) as a single fraction.
2lomx-\pi lom=2\cos(x)
Cancel out 2 and 2.
\left(2omx-\pi om\right)l=2\cos(x)
Combine all terms containing l.
\left(2mox-\pi mo\right)l=2\cos(x)
The equation is in standard form.
\frac{\left(2mox-\pi mo\right)l}{2mox-\pi mo}=\frac{2\cos(x)}{2mox-\pi mo}
Divide both sides by 2mox-mo\pi .
l=\frac{2\cos(x)}{2mox-\pi mo}
Dividing by 2mox-mo\pi undoes the multiplication by 2mox-mo\pi .
l=\frac{2\cos(x)}{mo\left(2x-\pi \right)}
Divide 2\cos(x) by 2mox-mo\pi .
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Multiply both sides of the equation by 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Use the distributive property to multiply 2lom by x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Express 2\left(-\frac{\pi }{2}\right) as a single fraction.
2lomx-\pi lom=2\cos(x)
Cancel out 2 and 2.
\left(2lox-\pi lo\right)m=2\cos(x)
Combine all terms containing m.
\frac{\left(2lox-\pi lo\right)m}{2lox-\pi lo}=\frac{2\cos(x)}{2lox-\pi lo}
Divide both sides by 2olx-ol\pi .
m=\frac{2\cos(x)}{2lox-\pi lo}
Dividing by 2olx-ol\pi undoes the multiplication by 2olx-ol\pi .
m=\frac{2\cos(x)}{lo\left(2x-\pi \right)}
Divide 2\cos(x) by 2olx-ol\pi .
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Multiply both sides of the equation by 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Use the distributive property to multiply 2lom by x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Express 2\left(-\frac{\pi }{2}\right) as a single fraction.
2lomx-\pi lom=2\cos(x)
Cancel out 2 and 2.
\left(2omx-\pi om\right)l=2\cos(x)
Combine all terms containing l.
\left(2mox-\pi mo\right)l=2\cos(x)
The equation is in standard form.
\frac{\left(2mox-\pi mo\right)l}{2mox-\pi mo}=\frac{2\cos(x)}{2mox-\pi mo}
Divide both sides by 2omx-\pi om.
l=\frac{2\cos(x)}{2mox-\pi mo}
Dividing by 2omx-\pi om undoes the multiplication by 2omx-\pi om.
l=\frac{2\cos(x)}{mo\left(2x-\pi \right)}
Divide 2\cos(x) by 2omx-\pi om.
2lom\left(x-\frac{\pi }{2}\right)=2\cos(x)
Multiply both sides of the equation by 2.
2lomx+2lom\left(-\frac{\pi }{2}\right)=2\cos(x)
Use the distributive property to multiply 2lom by x-\frac{\pi }{2}.
2lomx+\frac{-2\pi }{2}lom=2\cos(x)
Express 2\left(-\frac{\pi }{2}\right) as a single fraction.
2lomx-\pi lom=2\cos(x)
Cancel out 2 and 2.
\left(2lox-\pi lo\right)m=2\cos(x)
Combine all terms containing m.
\frac{\left(2lox-\pi lo\right)m}{2lox-\pi lo}=\frac{2\cos(x)}{2lox-\pi lo}
Divide both sides by 2lox-\pi lo.
m=\frac{2\cos(x)}{2lox-\pi lo}
Dividing by 2lox-\pi lo undoes the multiplication by 2lox-\pi lo.
m=\frac{2\cos(x)}{lo\left(2x-\pi \right)}
Divide 2\cos(x) by 2lox-\pi lo.