Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

le\left(\frac{5}{5}-\frac{2}{5}\right)\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Convert 1 to fraction \frac{5}{5}.
le\times \frac{5-2}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 5 to get 3.
le\times \frac{3}{5}\left(\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
le\times \frac{3}{5}\left(\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\left(\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Add 3 and 2 to get 5.
le\times \frac{3}{5}\left(\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
le\times \frac{3}{5}\left(\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 3 from 10 to get 7.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 13 is 26. Convert \frac{1}{2} and \frac{1}{13} to fractions with denominator 26.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{13}{26} and \frac{2}{26} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{11}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 13 to get 11.
le\times \frac{3}{5}\left(\frac{7\times 11}{12\times 26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Multiply \frac{7}{12} times \frac{11}{26} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Do the multiplications in the fraction \frac{7\times 11}{12\times 26}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3}{4}\times \frac{2}{9}\right)
Divide \frac{3}{4} by \frac{9}{2} by multiplying \frac{3}{4} by the reciprocal of \frac{9}{2}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3\times 2}{4\times 9}\right)
Multiply \frac{3}{4} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{6}{36}\right)
Do the multiplications in the fraction \frac{3\times 2}{4\times 9}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{1}{6}\right)
Reduce the fraction \frac{6}{36} to lowest terms by extracting and canceling out 6.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{52}{312}\right)
Least common multiple of 312 and 6 is 312. Convert \frac{77}{312} and \frac{1}{6} to fractions with denominator 312.
le\times \frac{3}{5}\times \frac{77+52}{312}
Since \frac{77}{312} and \frac{52}{312} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\times \frac{129}{312}
Add 77 and 52 to get 129.
le\times \frac{3}{5}\times \frac{43}{104}
Reduce the fraction \frac{129}{312} to lowest terms by extracting and canceling out 3.
le\times \frac{3\times 43}{5\times 104}
Multiply \frac{3}{5} times \frac{43}{104} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{129}{520}
Do the multiplications in the fraction \frac{3\times 43}{5\times 104}.
le\left(\frac{5}{5}-\frac{2}{5}\right)\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Convert 1 to fraction \frac{5}{5}.
le\times \frac{5-2}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 5 to get 3.
le\times \frac{3}{5}\left(\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
le\times \frac{3}{5}\left(\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\left(\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Add 3 and 2 to get 5.
le\times \frac{3}{5}\left(\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
le\times \frac{3}{5}\left(\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 3 from 10 to get 7.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 13 is 26. Convert \frac{1}{2} and \frac{1}{13} to fractions with denominator 26.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{13}{26} and \frac{2}{26} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{11}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 13 to get 11.
le\times \frac{3}{5}\left(\frac{7\times 11}{12\times 26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Multiply \frac{7}{12} times \frac{11}{26} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Do the multiplications in the fraction \frac{7\times 11}{12\times 26}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3}{4}\times \frac{2}{9}\right)
Divide \frac{3}{4} by \frac{9}{2} by multiplying \frac{3}{4} by the reciprocal of \frac{9}{2}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3\times 2}{4\times 9}\right)
Multiply \frac{3}{4} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{6}{36}\right)
Do the multiplications in the fraction \frac{3\times 2}{4\times 9}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{1}{6}\right)
Reduce the fraction \frac{6}{36} to lowest terms by extracting and canceling out 6.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{52}{312}\right)
Least common multiple of 312 and 6 is 312. Convert \frac{77}{312} and \frac{1}{6} to fractions with denominator 312.
le\times \frac{3}{5}\times \frac{77+52}{312}
Since \frac{77}{312} and \frac{52}{312} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\times \frac{129}{312}
Add 77 and 52 to get 129.
le\times \frac{3}{5}\times \frac{43}{104}
Reduce the fraction \frac{129}{312} to lowest terms by extracting and canceling out 3.
le\times \frac{3\times 43}{5\times 104}
Multiply \frac{3}{5} times \frac{43}{104} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{129}{520}
Do the multiplications in the fraction \frac{3\times 43}{5\times 104}.