\operatorname { le } ( 1 - \frac { 2 } { 5 } ) \cdot ( ( \frac { 1 } { 2 } + \frac { 1 } { 3 } - \frac { 1 } { 4 } ) \cdot ( \frac { 1 } { 2 } - \frac { 1 } { 13 } ) + \frac { 3 } { 4 } : \frac { 9 } { 2 } ]
Evaluate
\frac{129el}{520}
Expand
\frac{129el}{520}
Share
Copied to clipboard
le\left(\frac{5}{5}-\frac{2}{5}\right)\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Convert 1 to fraction \frac{5}{5}.
le\times \frac{5-2}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 5 to get 3.
le\times \frac{3}{5}\left(\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
le\times \frac{3}{5}\left(\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\left(\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Add 3 and 2 to get 5.
le\times \frac{3}{5}\left(\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
le\times \frac{3}{5}\left(\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 3 from 10 to get 7.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 13 is 26. Convert \frac{1}{2} and \frac{1}{13} to fractions with denominator 26.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{13}{26} and \frac{2}{26} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{11}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 13 to get 11.
le\times \frac{3}{5}\left(\frac{7\times 11}{12\times 26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Multiply \frac{7}{12} times \frac{11}{26} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Do the multiplications in the fraction \frac{7\times 11}{12\times 26}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3}{4}\times \frac{2}{9}\right)
Divide \frac{3}{4} by \frac{9}{2} by multiplying \frac{3}{4} by the reciprocal of \frac{9}{2}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3\times 2}{4\times 9}\right)
Multiply \frac{3}{4} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{6}{36}\right)
Do the multiplications in the fraction \frac{3\times 2}{4\times 9}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{1}{6}\right)
Reduce the fraction \frac{6}{36} to lowest terms by extracting and canceling out 6.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{52}{312}\right)
Least common multiple of 312 and 6 is 312. Convert \frac{77}{312} and \frac{1}{6} to fractions with denominator 312.
le\times \frac{3}{5}\times \frac{77+52}{312}
Since \frac{77}{312} and \frac{52}{312} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\times \frac{129}{312}
Add 77 and 52 to get 129.
le\times \frac{3}{5}\times \frac{43}{104}
Reduce the fraction \frac{129}{312} to lowest terms by extracting and canceling out 3.
le\times \frac{3\times 43}{5\times 104}
Multiply \frac{3}{5} times \frac{43}{104} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{129}{520}
Do the multiplications in the fraction \frac{3\times 43}{5\times 104}.
le\left(\frac{5}{5}-\frac{2}{5}\right)\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Convert 1 to fraction \frac{5}{5}.
le\times \frac{5-2}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 5 to get 3.
le\times \frac{3}{5}\left(\left(\frac{3}{6}+\frac{2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
le\times \frac{3}{5}\left(\left(\frac{3+2}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\left(\left(\frac{5}{6}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Add 3 and 2 to get 5.
le\times \frac{3}{5}\left(\left(\frac{10}{12}-\frac{3}{12}\right)\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 6 and 4 is 12. Convert \frac{5}{6} and \frac{1}{4} to fractions with denominator 12.
le\times \frac{3}{5}\left(\frac{10-3}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{10}{12} and \frac{3}{12} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{1}{2}-\frac{1}{13}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 3 from 10 to get 7.
le\times \frac{3}{5}\left(\frac{7}{12}\left(\frac{13}{26}-\frac{2}{26}\right)+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Least common multiple of 2 and 13 is 26. Convert \frac{1}{2} and \frac{1}{13} to fractions with denominator 26.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{13-2}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Since \frac{13}{26} and \frac{2}{26} have the same denominator, subtract them by subtracting their numerators.
le\times \frac{3}{5}\left(\frac{7}{12}\times \frac{11}{26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Subtract 2 from 13 to get 11.
le\times \frac{3}{5}\left(\frac{7\times 11}{12\times 26}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Multiply \frac{7}{12} times \frac{11}{26} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{\frac{3}{4}}{\frac{9}{2}}\right)
Do the multiplications in the fraction \frac{7\times 11}{12\times 26}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3}{4}\times \frac{2}{9}\right)
Divide \frac{3}{4} by \frac{9}{2} by multiplying \frac{3}{4} by the reciprocal of \frac{9}{2}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{3\times 2}{4\times 9}\right)
Multiply \frac{3}{4} times \frac{2}{9} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{6}{36}\right)
Do the multiplications in the fraction \frac{3\times 2}{4\times 9}.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{1}{6}\right)
Reduce the fraction \frac{6}{36} to lowest terms by extracting and canceling out 6.
le\times \frac{3}{5}\left(\frac{77}{312}+\frac{52}{312}\right)
Least common multiple of 312 and 6 is 312. Convert \frac{77}{312} and \frac{1}{6} to fractions with denominator 312.
le\times \frac{3}{5}\times \frac{77+52}{312}
Since \frac{77}{312} and \frac{52}{312} have the same denominator, add them by adding their numerators.
le\times \frac{3}{5}\times \frac{129}{312}
Add 77 and 52 to get 129.
le\times \frac{3}{5}\times \frac{43}{104}
Reduce the fraction \frac{129}{312} to lowest terms by extracting and canceling out 3.
le\times \frac{3\times 43}{5\times 104}
Multiply \frac{3}{5} times \frac{43}{104} by multiplying numerator times numerator and denominator times denominator.
le\times \frac{129}{520}
Do the multiplications in the fraction \frac{3\times 43}{5\times 104}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}