\operatorname { gcd } ( 98,72 ) = 98 x + 72 y \cdot 9
Solve for c
\left\{\begin{matrix}c=\frac{25\left(49x+324y\right)}{1234dg}\text{, }&d\neq 0\text{ and }g\neq 0\\c\in \mathrm{R}\text{, }&x=-\frac{324y}{49}\text{ and }\left(d=0\text{ or }g=0\right)\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{25\left(49x+324y\right)}{1234cg}\text{, }&c\neq 0\text{ and }g\neq 0\\d\in \mathrm{R}\text{, }&x=-\frac{324y}{49}\text{ and }\left(c=0\text{ or }g=0\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
gcd\times 98,72=98x+648y
Multiply 72 and 9 to get 648.
\frac{2468dg}{25}c=98x+648y
The equation is in standard form.
\frac{25\times \frac{2468dg}{25}c}{2468dg}=\frac{25\left(98x+648y\right)}{2468dg}
Divide both sides by 98,72gd.
c=\frac{25\left(98x+648y\right)}{2468dg}
Dividing by 98,72gd undoes the multiplication by 98,72gd.
c=\frac{25\left(49x+324y\right)}{1234dg}
Divide 98x+648y by 98,72gd.
gcd\times 98,72=98x+648y
Multiply 72 and 9 to get 648.
\frac{2468cg}{25}d=98x+648y
The equation is in standard form.
\frac{25\times \frac{2468cg}{25}d}{2468cg}=\frac{25\left(98x+648y\right)}{2468cg}
Divide both sides by 98,72gc.
d=\frac{25\left(98x+648y\right)}{2468cg}
Dividing by 98,72gc undoes the multiplication by 98,72gc.
d=\frac{25\left(49x+324y\right)}{1234cg}
Divide 98x+648y by 98,72gc.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}