Skip to main content
Solve for f
Tick mark Image
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

erfx=\frac{2\int _{0}^{x}e^{-t^{2}}\mathrm{d}t}{\sqrt{\pi }}
Express \frac{2}{\sqrt{\pi }}\int _{0}^{x}e^{-t^{2}}\mathrm{d}t as a single fraction.
erxf=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }}
The equation is in standard form.
\frac{erxf}{erx}=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }erx}
Divide both sides by erx.
f=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }erx}
Dividing by erx undoes the multiplication by erx.
f=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{e\sqrt{\pi }rx}
Divide \frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }} by erx.
erfx=\frac{2\int _{0}^{x}e^{-t^{2}}\mathrm{d}t}{\sqrt{\pi }}
Express \frac{2}{\sqrt{\pi }}\int _{0}^{x}e^{-t^{2}}\mathrm{d}t as a single fraction.
efxr=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }}
The equation is in standard form.
\frac{efxr}{efx}=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }efx}
Divide both sides by efx.
r=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }efx}
Dividing by efx undoes the multiplication by efx.
r=\frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{e\sqrt{\pi }fx}
Divide \frac{2\int _{0}^{x}\frac{1}{e^{t^{2}}}\mathrm{d}t}{\sqrt{\pi }} by efx.