Skip to main content
Solve for f (complex solution)
Tick mark Image
Solve for n (complex solution)
Tick mark Image
Solve for f
Tick mark Image
Solve for n
Tick mark Image
Graph

Similar Problems from Web Search

Share

enfx\left(x-2\right)=x^{2}-5x+7
Multiply both sides of the equation by x-2.
enfx^{2}-2enfx=x^{2}-5x+7
Use the distributive property to multiply enfx by x-2.
\left(enx^{2}-2enx\right)f=x^{2}-5x+7
Combine all terms containing f.
\frac{\left(enx^{2}-2enx\right)f}{enx^{2}-2enx}=\frac{x^{2}-5x+7}{enx^{2}-2enx}
Divide both sides by ex^{2}n-2xne.
f=\frac{x^{2}-5x+7}{enx^{2}-2enx}
Dividing by ex^{2}n-2xne undoes the multiplication by ex^{2}n-2xne.
f=\frac{x^{2}-5x+7}{enx\left(x-2\right)}
Divide x^{2}-5x+7 by ex^{2}n-2xne.
enfx\left(x-2\right)=x^{2}-5x+7
Multiply both sides of the equation by x-2.
enfx^{2}-2enfx=x^{2}-5x+7
Use the distributive property to multiply enfx by x-2.
\left(efx^{2}-2efx\right)n=x^{2}-5x+7
Combine all terms containing n.
\frac{\left(efx^{2}-2efx\right)n}{efx^{2}-2efx}=\frac{x^{2}-5x+7}{efx^{2}-2efx}
Divide both sides by ex^{2}f-2xfe.
n=\frac{x^{2}-5x+7}{efx^{2}-2efx}
Dividing by ex^{2}f-2xfe undoes the multiplication by ex^{2}f-2xfe.
n=\frac{x^{2}-5x+7}{efx\left(x-2\right)}
Divide x^{2}-5x+7 by ex^{2}f-2xfe.
enfx\left(x-2\right)=x^{2}-5x+7
Multiply both sides of the equation by x-2.
enfx^{2}-2enfx=x^{2}-5x+7
Use the distributive property to multiply enfx by x-2.
\left(enx^{2}-2enx\right)f=x^{2}-5x+7
Combine all terms containing f.
\frac{\left(enx^{2}-2enx\right)f}{enx^{2}-2enx}=\frac{x^{2}-5x+7}{enx^{2}-2enx}
Divide both sides by ex^{2}n-2xne.
f=\frac{x^{2}-5x+7}{enx^{2}-2enx}
Dividing by ex^{2}n-2xne undoes the multiplication by ex^{2}n-2xne.
f=\frac{x^{2}-5x+7}{enx\left(x-2\right)}
Divide x^{2}-5x+7 by ex^{2}n-2xne.
enfx\left(x-2\right)=x^{2}-5x+7
Multiply both sides of the equation by x-2.
enfx^{2}-2enfx=x^{2}-5x+7
Use the distributive property to multiply enfx by x-2.
\left(efx^{2}-2efx\right)n=x^{2}-5x+7
Combine all terms containing n.
\frac{\left(efx^{2}-2efx\right)n}{efx^{2}-2efx}=\frac{x^{2}-5x+7}{efx^{2}-2efx}
Divide both sides by ex^{2}f-2xfe.
n=\frac{x^{2}-5x+7}{efx^{2}-2efx}
Dividing by ex^{2}f-2xfe undoes the multiplication by ex^{2}f-2xfe.
n=\frac{x^{2}-5x+7}{efx\left(x-2\right)}
Divide x^{2}-5x+7 by ex^{2}f-2xfe.